AI Article Synopsis

  • 3D printing techniques like digital light processing (DLP) can efficiently produce polymer-based piezoelectric composites by incorporating conductive nanomaterials to enhance their properties.
  • The study examines the effects of adding 0.1 wt.% of nanomaterials—including multi-walled carbon nanotubes, graphene nanoplatelets, and carbon black—on the microstructure, viscosity, and dielectric properties of UV-curable photopolymers.
  • Results show that while all suspensions reduce viscosity for better 3D printing, the addition of nanomaterials significantly decreases cure depth and leads to decreased charge mobility in the composites, particularly highlighting MWCNTs in ethanol as the most effective option for improving dielectric properties.

Article Abstract

Notably, 3D printing techniques such as digital light processing (DLP) have the potential for the cost-effective and flexible production of polymer-based piezoelectric composites. To improve their properties, conductive nanomaterials can be added to the photopolymer to increase their dielectric properties. In this study, the microstructure, viscosity, cure depth, and dielectric properties of ultraviolet (UV) light curable 0.1 wt.% nanomaterial/photopolymer composites are investigated. The composites with multi-walled carbon nanotubes (MWCNTs), graphene nanoplatelets (GNPs), and carbon black (CB) are pre-dispersed in different solvents (acetone, isopropyl alcohol, and ethanol) before adding photopolymer and continuing dispersion. For all prepared suspensions, a reduction in viscosity is observed, which is favorable for 3D printing. In contrast, the addition of 0.1 wt.% nanomaterials, even with poor dispersion, leads to curing depth reduction up to 90% compared to pristine photopolymer, where the nanomaterial dispersion is identified as a contributing factor. The formulation of MWCNTs dispersed in ethanol is found to be the most promising for increasing the dielectric properties. The post-curing of all composites leads to charge immobility, resulting in decreased relative permittivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8618496PMC
http://dx.doi.org/10.3390/polym13223948DOI Listing

Publication Analysis

Top Keywords

dielectric properties
16
wt% nanomaterial/photopolymer
8
nanomaterial/photopolymer composites
8
nanomaterial dispersion
8
viscosity cure
8
cure depth
8
depth dielectric
8
composites
5
properties
5
characterization wt%
4

Similar Publications

An electro- and optically favorable quaternary nanocomposite film was produced by solution-casting nickel oxide nanoparticles (NiO NPs) into polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS). Based on transmission electron microscopy (TEM) and X-ray diffraction (XRD) observations, the synthesized NiO NPs have a cubic phase and a diameter between 10 and 45 nm. The complexity and interactions observed through XRD patterns, UV-visible spectra, and FTIR measurements suggest that the NPs are not just dispersed within the polymer matrix, but are interacting with it, leading to enhanced dielectric properties and AC electrical conductivity.

View Article and Find Full Text PDF

Novel smart materials with high curie temperatures: EuDyGeO, EuLaGeO and EuHoGeO.

Appl Radiat Isot

December 2024

Department of Metallurgy and Materials Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University, Konya, Turkey.

The EuDyGeO, EuLaGeO and EuHoGeO powder were obtained through a solid-state reaction method via multistep firing of stoichiometric ratios of EuO, GeO, DyO, LaO and HoO in open atmosphere at temperatures from 800 to 1150 °C. The thermal behaviour, phase formation, SEM/EDX analysis, photoluminescence properties, Curie tempereture, dielectric and piezoelectric properties of the samples were investigated by TG/DTA, XRD, SEM, PL, TG/DTA, LCR-meter and d-meter, respectively. The germenates having triclinic crystal system have D→F, D→F, D→F, D→F transitions of Eu ions.

View Article and Find Full Text PDF

Organic-inorganic hybrid lead halides have been extensively studied due to their outstanding physical properties and diverse compositional elements. However, environmentally benign tin-based hybrids with remarkable flexibility in bandgap engineering have been less investigated. Herein, we report the successful design and synthesis of three tin-based organic-inorganic hybrid compounds through precise molecular modification: [Me(i-Pr)N][SnBr] (), [MeCHCl(i-Pr)N][SnBr] (), and [MeCHBr(i-Pr-Br)N][SnBr] ().

View Article and Find Full Text PDF

Designing Hybrid Plasmonic Superlattices with Spatially Confined Responsive Heterostructural Units.

Nano Lett

January 2025

State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China.

Plasmonic superlattices enable the precise manipulation of electromagnetic fields at the nanoscale. However, the optical properties of static lattices are dictated by their geometry and cannot be reconfigured. Here, we present a surface-interface engineered plasmonic superlattice with confined polyelectrolyte-functionalized metal-organic framework (MOF) hybrid layers to tune plasmon resonance for ultrafast chemical sensing.

View Article and Find Full Text PDF

Ultra-Flexible High-Linearity Silicon Nanomembrane Synaptic Transistor Array.

Adv Mater

January 2025

School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China.

The increasing demand for mobile artificial intelligence applications has elevated edge computing to a prominent research area. Silicon materials, renowned for their excellent electrical properties, are extensively utilized in traditional electronic devices. However, the development of silicon materials for flexible neuromorphic computing devices encounters great challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!