Micromachining techniques have been applied widely to many industrial sectors, including aerospace, automotive, and precision instruments. However, due to their high-precision machining requirements, and the knowledge-intensive characteristics of miniaturized parts, complex manufacturing process problems often hinder production. To solve these problems, a systematic scheme for structured micromachining process problem solving and an innovation support system is required. This paper presents a knowledge-based holistic framework that enables process planners to achieve micromachining innovation design. By analyzing innovation design procedures and available knowledge sources, an open multi-source Machining Process Innovation Knowledge (MPIK) acquisition paradigm is presented, including knowledge units and a knowledge network. Further, a MPIK network-driven structured process problem-solving and heuristic innovation design method was explored. Subsequently, a knowledge-driven heuristic design system for machining process innovation was integrated in the Computer-Aided Process Innovation (CAPI) platform. Finally, a case study involving specific process problem-solving and innovation scheme design for micro-turbine machining was studied to validate the proposed approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625213 | PMC |
http://dx.doi.org/10.3390/mi12111357 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!