Thermal Deformations of Thermoplast during 3D Printing: Warping in the Case of ABS.

Materials (Basel)

Department of Pharmaceutical Biophysics, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland.

Published: November 2021

This research focuses on thermal deformations of thermoplast during three-dimensional printing. A filament acrylonitrile butadiene styrene was used, and the main focus was put on warping. Twenty-seven cuboids divided in six categories by their length, height, surface area, color, nozzle temperature and bed temperature were printed by Fused Filament Fabrication 3D printer. The whole process was captured by a thermal camera and the movies were used to analyze the temperature distribution during printing. All printouts were measured and scanned with a 3D scanner in order to highlight any abbreviations from the original digital models. The obtained results were used to formulate some general conclusions on the influence of selected parameters on the warping process. Based on the outcomes of the study, a set of guidelines on how to minimalize warping was proposed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620654PMC
http://dx.doi.org/10.3390/ma14227070DOI Listing

Publication Analysis

Top Keywords

thermal deformations
8
deformations thermoplast
8
thermoplast printing
4
warping
4
printing warping
4
warping case
4
case abs
4
abs focuses
4
focuses thermal
4
thermoplast three-dimensional
4

Similar Publications

Holographic light potentials generated by phase-modulating liquid-crystal spatial light modulators (SLMs) are widely used in quantum technology applications. Accurate calibration of the wavefront and intensity profile of the laser beam at the SLM display is key to the high fidelity of holographic potentials. Here, we present a new calibration technique that is faster than previous methods while maintaining the same level of accuracy.

View Article and Find Full Text PDF

This study developed a W/O/W emulsion gel encapsulating proanthocyanidins from Aronia melanocarpa (Michx.) Elliott (APC) using polyglycerol ricinoleate (PGPR) as the lipophilic emulsifier and sodium caseinate (NaCN)-alginate (Alg) as the hydrophilic emulsifier. The optimal preparation process was established based on particle size, zeta potential, phase separation, centrifugal stability, and microscopic morphology: 4.

View Article and Find Full Text PDF

Asymmetric self-organization from a symmetric film by phase separation.

Nanoscale

January 2025

Department of Materials Science and Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan.

Self-organization realizes various nanostructures to control material properties such as superconducting vortex pinning and thermal conductivity. However, the self-organization of nucleation and growth is constrained by the growth geometric symmetry. To realize highly controlled three-dimensional nanostructures by self-organization, nanostructure formation that breaks the growth geometric symmetry thermodynamically and kinetically, such as tilted or in-plane aligned nanostructures, is a challenging issue.

View Article and Find Full Text PDF

Stretchable Blue Phase Liquid Crystal Lasers with Optical Stability Based on Small-Strain Nonlinear 3D Asymmetric Deformation.

Adv Mater

January 2025

CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.

Blue phase liquid crystal (BPLC) lasers exhibit exceptional optical quality and tunability to external stimuli, holding significant promise for innovative developments in the field of flexible optoelectronics. However, there remain challenges for BPLC elastomer (BPLCE) lasers in maintaining good optical stability during stretching and varying temperature conditions. In this work, a stretchable laser is developed based on a well-designed BPLCE with a combination of partially and fully crosslinked networks, which can output a single-peak laser under small deformation (44.

View Article and Find Full Text PDF

The heating oil circuit plays an essential role in the heating calendering roller for the lithium battery pole piece. To achieve the optimization of the heating oil circuit, a fluid-thermal-structural coupling method and a multi-objective optimization procedure are proposed to obtain the optimal solution. A fluid-thermal-structural coupling flowchart based on the numerical modeling for the calendering roller temperature distribution is created to automate the analysis processes in the optimization iteration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!