The fundamental issue in surface metrology is to provide methods that can allow the establishment of correlations between measured topographies and performance or processes, or that can discriminate confidently topographies that are processed or performed differently. This article presents a set of topographies from two-staged processed steel rings, measured with a 3D contact profilometer. Data were captured individually from four different regions, namely the top, bottom, inner, and outer surfaces. The rings were manufactured by drop forging and hot rolling. Final surface texture was achieved by mass finishing with spherical ceramic media or cut wire. In this study, we compared four different multiscale methods: sliding bandpass filtering, three geometric length- and area-scale analyses, and the multiscale curvature tensor approach. In the first method, ISO standard parameters were evaluated as a function of the central wavelength and bandwidth for measured textures. In the second and third method, complexity and relative length and area were utilized. In the last, multiscale curvature tensor statistics were calculated for a range of scales from the original sampling interval to its forty-five times multiplication. These characterization parameters were then utilized to determine how confident we can discriminate (through F-test) topographies between regions of the same specimen and between topographies resulting from processing with various technological parameters. Characterization methods that focus on the geometrical properties of topographic features allowed for discrimination at the finest scales only. Bandpass filtration and basic height parameters Sa and Sq proved to confidently discriminate against all factors at all three considered bandwidths.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8624860 | PMC |
http://dx.doi.org/10.3390/ma14227044 | DOI Listing |
Unlabelled: Cytoplasmic proteins must recruit to membranes to function in processes such as endocytosis and cell division. Many of these proteins recognize not only the chemical structure of the membrane lipids, but the curvature of the surface, binding more strongly to more highly curved surfaces, or 'curvature sensing'. Curvature sensing by amphipathic helices is known to vary with membrane bending rigidity, but changes to lipid composition can simultaneously alter membrane thickness, spontaneous curvature, and leaflet symmetry, thus far preventing a systematic characterization of lipid composition on such curvature sensing through either experiment or simulation.
View Article and Find Full Text PDFSoft Matter
January 2025
Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
The eukaryotic cytoskeleton is an intricate network of three types of mechanically distinct biopolymers - actin filaments, microtubules and intermediate filaments (IFs). These filamentous networks determine essential cellular functions and properties. Among them, microtubules are important for intracellular transport and establishing cell polarity during migration.
View Article and Find Full Text PDFPeerJ Comput Sci
August 2024
School of Computer and Communication, Lanzhou University of Technology, Lanzhou, Gansu, China.
The generator, which combines convolutional neural network (CNN) and Transformer as its core modules, serves as the primary model for the handwriting font generation network and demonstrates effective performance. However, there are still problems with insufficient feature extraction in the overall structure of the font, the thickness of strokes, and the curvature of strokes, resulting in subpar detail in the generated fonts. To solve the problems, we propose a method for constructing a handwritten font generation model based on Pyramid Squeeze Attention, called PSA-HWT.
View Article and Find Full Text PDFNat Commun
November 2024
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
The lack of a chemical platform with high spatial dimensional diversity, coupled with the elusive multi-scale amorphous physics, significantly hinder advancements in amorphous electromagnetic wave absorption (EWA) materials. Herein, we present a synergistic engineering of phenolic multiple kinetic dynamics and discrete crystallization thermodynamics, to elucidate the origin of the dielectric properties in amorphous carbon and the cascade effect during EWA. Leveraging the scalability of phenolic synthesis, we design dozens of morphologies from the bottom up and combine with in-situ pyrolysis to establish a nanomaterial ecosystem of hundreds of amorphous carbon materials.
View Article and Find Full Text PDFBioengineering (Basel)
November 2024
Institute for Hospital Management of Tsinghua University, Shenzhen 518000, China.
The traditional scoliosis examination based on X-ray film is not suitable for large-scale screening, and it is also not suitable for dynamic evaluation during rehabilitation. Therefore, based on computer vision technology, this paper puts forward an evaluation method of scoliosis with different photos of the back taken by mobile phones, which involves three aspects: first, based on the key point detection model of YOLOv8, an algorithm for judging the type of spinal coronal curvature is proposed; second, an algorithm for evaluating the coronal plane of the spine based on the key points of the human back is proposed, aiming at quantifying the deviation degree of the spine in the coronal plane; third, the measurement algorithm of trunk rotation (ATR angle) based on multi-scale automatic peak detection (AMPD) is proposed, aiming at quantifying the deviation degree of the spine in sagittal plane. The public dataset and clinical paired data (mobile phone photo and X-ray) are used to test.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!