A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In Situ Remediation of Phosphogypsum with Water-Washing Pre-Treatment Using Cemented Paste Backfill: Rheology Behavior and Damage Evolution. | LitMetric

The accumulation of original phosphogypsum (OPG) has occupied considerable land resources, which have induced significant environmental problems worldwide. The OPG-based cemented paste backfill (OCPB) has been introduced as a promising solution. In this study, a water-washing pre-treatment was used to purify OPG, aiming to optimize the transport performance and mechanical properties of backfills. The overall results proved that in treated phosphogypsum-based cemented paste backfill (TCPB), the altered particle size distribution can alleviate the shear-thinning characteristic. The mechanical properties were significantly optimized, of which a maximum increase of 183% of stress value was observed. With more pronounced AE signals, the TCPB samples demonstrated better residual structures after the ultimate strength values but with more unstable cracks with high amplitude generated during loading. Principal component analysis confirmed the adverse effects of fluorine and phosphorus on the damage fractal dimensions. The most voluminous hydration products observed were amorphous CSH and ettringite. The interlocked stellate clusters may be associated with the residual structure and the after-peak AE events evident in TCPB, indicate that more significant stress should be applied to break the closely interlocked stitches. Ultimately, the essential findings in this experimental work can provide a scientific reference for efficient OPG recycling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8618653PMC
http://dx.doi.org/10.3390/ma14226993DOI Listing

Publication Analysis

Top Keywords

cemented paste
12
paste backfill
12
water-washing pre-treatment
8
mechanical properties
8
situ remediation
4
remediation phosphogypsum
4
phosphogypsum water-washing
4
pre-treatment cemented
4
backfill rheology
4
rheology behavior
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!