The paper presents a method for obtaining electrochemically active ultrafine composites of iron oxides, superparamagnetic 'core/shell' γ-FeO/defective α-FeO, which involved modifying sol-gel citrate synthesis, hydrothermal treatment of the formed sol, and subsequent annealing of materials in the air. The synthesized materials' phase composition, magnetic microstructure, and structural, morphological characteristics have been determined via X-ray analysis, Mossbauer spectroscopy, scanning electron microscopy (SEM), and adsorption porometry. The mechanisms of phase stability were analyzed, and the model was suggested as FeOOH → γ-FeO → α-FeO. It was found that the presence of chelating agents in hydrothermal synthesis encapsulated the nucleus of the new phase in the reactor and interfered with the direct processes of recrystallization of the structure with the subsequent formation of the α-FeO crystalline phase. Additionally, the conductive properties of the synthesized materials were determined by impedance spectroscopy. The electrochemical activity of the synthesized materials was evaluated by the method of cyclic voltammetry using a three-electrode cell in a 3.5 M aqueous solution of KOH. For the ultrafine superparamagnetic 'core/shell' γ-FeO/defective α-FeO composite with defective hematite structure and the presence of ultra-dispersed maghemite with particles in the superparamagnetic state was fixed increased electrochemical activity, and specific discharge capacity of the material is 177 F/g with a Coulomb efficiency of 85%. The prototypes of hybrid supercapacitor with work electrodes based on ultrafine composites superparamagnetic 'core/shell' γ-FeO/defective α-FeO have a specific discharge capacity of 124 F/g with a Coulomb efficiency of 93% for current 10 mA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620642PMC
http://dx.doi.org/10.3390/ma14226977DOI Listing

Publication Analysis

Top Keywords

superparamagnetic 'core/shell'
16
'core/shell' γ-feo/defective
16
γ-feo/defective α-feo
16
ultrafine superparamagnetic
8
ultrafine composites
8
synthesized materials
8
electrochemical activity
8
specific discharge
8
discharge capacity
8
f/g coulomb
8

Similar Publications

Intra-Mesopore Immunoassay Based on Core-Shell Structured Magnetic Hierarchically Porous ZIFs.

ACS Sens

January 2025

Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

It is crucial yet challenging to sensitively quantify low-abundance biomarkers in blood for early screening and diagnosis of various diseases. Herein, an analytical model of intra-mesopore immunoassay (IMIA) was proposed, which was competent to examine various biomarkers at the femtomolar level. The success is rooted in the design of an innovative superparamagnetic core-shell structure with FeO nanoparticles (NPs) at the core and hierarchically porous zeolitic imidazolate frameworks as a shell (FeO@HPZIF-8), achieved through a soft-template directed self-assembly coupled with confinement growth mechanism.

View Article and Find Full Text PDF

Herein, a novel amine-functionalized magnetic resorcinol-formaldehyde with a core-shell structure (FeO@RF/Pr-NH) is prepared through the chemical immobilization of (3-aminopropyl)trimethoxysilane over FeO@RF composite. Characterization through FT-IR, EDX, PXRD, and TGA confirmed successful surface modification while preserving the crystalline structure of FeO. The VSM analysis demonstrated excellent superparamagnetic properties, and SEM and TEM images revealed spherical particles for the designed nanocatalyst.

View Article and Find Full Text PDF

Development of Simple and Rapid Bead-Based Cytometric Immunoassays Using Superparamagnetic Hybrid Core-Shell Microparticles.

ACS Meas Sci Au

December 2024

Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, Berlin D-12489, Germany.

Flow cytometry-based immunoassays are valuable in biomedical research and clinical applications due to their high throughput and multianalyte capability, but their adoption in areas such as food safety and environmental monitoring is limited by long assay times and complex workflows. Rapid, simplified bead-based cytometric immunoassays are needed to make these methods viable for point-of-need applications, especially with the increasing accessibility of miniaturized cytometers. This work introduces superparamagnetic hybrid polystyrene-silica core-shell microparticles as promising alternatives to conventional polymer beads in competitive cytometric immunoassays.

View Article and Find Full Text PDF

Exosomes are a type of membrane vesicle secreted into the extracellular medium by most cell types. They have a great potential for clinical practice as noninvasive biomarkers for diagnosis of various diseases, prognosis, and monitoring of therapy, which stimulates the development of simple methods for isolating exosomes from biological fluids. A novel affine material based on aminosilanized superparamagnetic core‒shell nanoparticles for fast isolation of urinary exosomes is reported.

View Article and Find Full Text PDF

Research Progress of Novel Inorganic Nanomaterials in the Diagnosis and Treatment of Alzheimer's Disease.

Neurol India

September 2024

School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P.R. China, Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning, Medical College, Hubei University of Science and Technology, Xianning, 437100, China.

The global increase in the number of Alzheimer's disease (AD) patients has posed numerous treatment challenges. Six Food and Drug Administration-approved medications (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!