The cold bending method is a type of curved glass curtain wall construction method that has been used in practical engineering for a short time. It has the advantages of simple operation, high efficiency and low cost. However, the mechanical response and properties of glass panes caused by cold bending have not been solved effectively. To study the mechanical response and the properties of cold formed laminated tempered glass panes after applying with a wind load, cold bending and load tests of 9 laminated tempered glass panes were conducted by the orthogonal experimental design method. The effects of cold bending curvature, glass pane thickness and interlayer thickness were considered. In this paper, the response law of cold bending stress to the curvature and the relationship among the influencing factors were analyzed. The variation process of stress, the deflection of cold-formed glass panes under uniform load and the characteristics affected by cold-formed stress and deformation were studied. The results show that the cold bending stress is distributed in a saddle shape, and the curvature has the greatest influence on the cold bending stress, followed by the thickness of the glass panes. The influence of the interlayer thickness is small. The maximum stress appears near the corner of the short side direction adjacent to the cold bending corner. The cold bending stress increases linearly with increasing cold bending curvature. The cold bending stress and deformation have little effect on the change process of the later stage load effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620817PMC
http://dx.doi.org/10.3390/ma14226914DOI Listing

Publication Analysis

Top Keywords

cold bending
48
glass panes
24
bending stress
20
cold
13
bending
12
mechanical response
12
tempered glass
12
corner cold
8
glass
8
load cold
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!