Cold rolling is widely employed in the manufacturing industry for the production of metal plates. In the cold rolling process, the thickness reduction of the metal plate under the recrystallization temperature generates severe anisotropy; this influences the subsequent forming processes. Therefore, the generation and prediction of metal plate anisotropy during cold rolling is a highly interesting research topic involving upstream studies of sheet metal forming. In this study, using the finite element method with zooming analysis, we established an efficient elastic-plastic analysis method to predict the metal plate texture after cold rolling. This method for cold rolling texture prediction was confirmed by comparing the experimental and simulation results of cold rolling for an S45C plate with a body-centered cubic lattice. Further, the numerical analysis method proposed in this study can contribute to the study of anisotropy as an alternative to experimental approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8619451 | PMC |
http://dx.doi.org/10.3390/ma14226909 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!