Orthotic and prosthetic materials should have good mechanical and antibacterial properties. Therefore, in our study, we consider four common foamed closed-cells and two solid polymeric materials regarding their mechanical behaviour and tendency for bacterial adhesion. For all materials, the surface roughness, hydrophobicity, zeta potential, tensile properties, hardness and CIE color parameters were measured. We found that foamed polymeric materials have higher roughness, higher hydrophobicity, lower Young's modulus, lower maximum tensile strength and lower hardness than solid materials. Bacterial adhesion test measurements based on observation by scanning electron microscopy show much a lower adhesion extent of on solid materials than on foamed materials. The measured biophysical properties could be the key data for users to select the optimal materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8619838PMC
http://dx.doi.org/10.3390/ma14226877DOI Listing

Publication Analysis

Top Keywords

biophysical properties
8
materials
8
polymeric materials
8
bacterial adhesion
8
solid materials
8
foamed
4
properties foamed
4
solid
4
foamed solid
4
solid polymers
4

Similar Publications

Article Synopsis
  • The transmembrane potential is crucial for cellular functions like signaling and energy production, with Rhodamine voltage reporters (RhoVRs) serving as small, non-invasive sensors that can detect voltage changes, especially in mitochondria.
  • Extensive simulations and free-energy calculations revealed that the orientation of RhoVRs relative to membranes, influenced by their polarized functional groups, significantly impacts their voltage sensitivity and localization within cells.
  • The study's findings on the relationship between the chemical structure of RhoVRs and their membrane behavior offer valuable insights for designing fluorescent dyes that better detect voltage changes.
View Article and Find Full Text PDF

Lipid droplets (LDs) are the major sites of lipid and energy homeostasis. However, few LD biogenesis proteins have been identified. Using model microalga , we show that ABHD1, an α/β-hydrolase domain-containing protein, is localized to the LD surface and stimulates LD formation through two actions: one enzymatic and one structural.

View Article and Find Full Text PDF

Nile blue has been widely used in histological staining, fluorescence labeling, and DNA probing, with its intercalation behavior into the DNA helix being well documented. Here, we present a comprehensive investigation to address a current knowledge gap regarding the binding properties of Nile blue to two types of double-stranded RNA (dsRNA): poly(A·U) and poly(I·C), using various biophysical techniques. Absorption and fluorescence spectroscopic studies suggest a significant binding interaction between Nile blue and the two designated dsRNAs, specifically indicating an intercalation binding mode with poly(A·U) and demonstrating a noticeably higher binding affinity compared to poly(I·C).

View Article and Find Full Text PDF

Despite the widespread use of MS for hydrogen/deuterium exchange measurements, no systematic, large-scale study has been conducted to compare the observed exchange rates in protein-derived, unstructured peptides measured by MS to the predicted exchange rates calculated from NMR-derived values and how neighboring residues and post-translational modifications influence those exchange rates. In this study, we sought to test the accuracy of predicted values by performing hydrogen exchange measurements on whole cell digests to generate an unbiased dataset of 563 unique peptides derived from naturally-occurring protein sequences. A remarkable 97% of observed exchange rates of peptides are within two-fold of predicted values.

View Article and Find Full Text PDF

Multifunctional layer-by-layer smart film with betalains and selenium nanoparticles for intelligent meat freshness monitoring and preservation.

Food Chem

January 2025

Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan, Ningxia 755299, China. Electronic address:

Multifunctional pH-responsive films were fabricated via layer-by-layer deposition of gelatin, chitosan, and carboxymethyl cellulose (CMC), incorporating selenium nanoparticles (SeNPs) and beetroot extract (BTE), to monitor and preserve beef freshness. SeNPs were synthesized and characterized via various techniques. BTE exhibited promising functional properties, and films demonstrated a significant color transition from red to yellow across pH 2-14.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!