Band Gap of Pb(FeNb)O Thin Films Prepared by Pulsed Laser Deposition.

Materials (Basel)

Institute for Materials Science, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141 Essen, Germany.

Published: November 2021

Ferroelectric materials have gained high interest for photovoltaic applications due to their open-circuit voltage not being limited to the band gap of the material. In the past, different lead-based ferroelectric perovskite thin films such as Pb(Zr,Ti)O (Pb,La)(Zr,Ti)O and PbTiO were investigated with respect to their photovoltaic efficiency. Nevertheless, due to their high band gaps they only absorb photons in the UV spectral range. The well-known ferroelectric PbFeNbO (PFN), which is in a structure similar to the other three, has not been considered as a possible candidate until now. We found that the band gap of PFN is around 2.75 eV and that the conductivity can be increased from 23 S/µm to 35 S/µm during illumination. The relatively low band gap value makes PFN a promising candidate as an absorber material.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625491PMC
http://dx.doi.org/10.3390/ma14226841DOI Listing

Publication Analysis

Top Keywords

band gap
16
thin films
8
gap pfn
8
band
5
gap pbfenbo
4
pbfenbo thin
4
films prepared
4
prepared pulsed
4
pulsed laser
4
laser deposition
4

Similar Publications

Ultrafast Charge Carrier Dynamics in Vanadium Dioxide, VO: Nonequilibrium Contributions to the Photoinduced Phase Transitions.

J Phys Chem Lett

January 2025

Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States.

Vanadium oxide (VO) is an exotic phase-change material with diverse applications ranging from thermochromic smart windows to thermal sensors, neuromorphic computing, and tunable metasurfaces. Nonetheless, the mechanism responsible for its metal-insulator phase transition remains a subject of vigorous debate. Here, we investigate the ultrafast dynamics of the photoinduced phase transition in VO under low perturbation conditions.

View Article and Find Full Text PDF

Pyrazine (tppz) and 5-sulfosalicylic acid (HSSA) mixed-bridging Cd(II)-CP, {[Cd(HSSA)(tppz)]} (), is highly luminescent, and the emission has been quenched selectively by Al in the presence of other cations, with a limit of detection (LOD) of 43.9 nM (1.18 ppb).

View Article and Find Full Text PDF

This study, we synthesized a graphene oxide@BiBTC MOF (GO@BiBTC) photocatalyst using a hydrothermal method. The resulting samples were comprehensively characterized using FT-IR, Raman spectra, XRD, SEM, TEM, XPS and UV-Vis spectroscopy. The photodegradation reaction fits the pseudo-first-order kinetics and the deterioration rate constants () value of BiBTC, GO@BiBTC MOF composites were 0.

View Article and Find Full Text PDF

Innovating nanocatalysts with both high intrinsic catalytic activity and high selectivity is crucial for multi-electron reactions, however, their low mass/electron transport at industrial-level currents is often overlooked, which usually leads to low comprehensive performance at the device level. Herein, a Cl/O etching-assisted self-assembly strategy is reported for synthesizing a self-assembled gap-rich PdMn nanofibers with high mass/electron transport highway for greatly enhancing the electrocatalytic reforming of waste plastics at industrial-level currents. The self-assembled PdMn nanofiber shows excellent catalytic activity in upcycling waste plastics into glycolic acid, with a high current density of 223 mA cm@0.

View Article and Find Full Text PDF

Construction and Band Gap-Regulation of Ordered Macro-Microporous Single Crystals of an Amine-Linked Covalent Organic Framework.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.

Heterogeneity engineering provides an effective route to manipulate the chemical and physical properties of covalent organic frameworks (COFs) but is still under development for their single-crystal form. Here, we report the strategy based on a combination of the template-assisted modulated synthesis with a one-pot crystallization-reduction method to directly construct ordered macro-microporous single crystals of an amine-linked three-dimensional (3D) COF (OM-COF-300-SR). In this strategy, the colloidal crystal-templating synthesis not only assists the formation of ordered macropores but also greatly facilitates the in situ conversion of linkages (from imine to amine) in the COF-300 single crystals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!