Articular cartilage, which is a white transparent tissue with 1-2 mm thickness, is located in the interface between the two hard bones. The main functions of articular cartilage are stress transmission, absorption, and friction reduction. The cartilage cannot be repaired and regenerated once it has been damaged, and it needs to be replaced by artificial joints. Many approaches, such as artificial joint replacement, hyaluronic acid injection, microfracture surgery and cartilage tissue engineering have been applied in clinical treatment. Basically, some of these approaches are foreign material implantation for joint replacement to reach the goal of pain reduction and mechanism support. This study demonstrated another frontier in the research of cartilage reconstruction by applying regeneration medicine additive manufacturing (3D Printing) and stem cell technology. Light curing materials have been modified and tested to be printable and cytocompatible for stem cells in this research. Design of experiments (DOE) is adapted in this investigation to search for the optimal manufacturing parameter for biocompatible scaffold fabrication and stem cell attachment and growth. Based on the results, an optimal working process of biocompatible and printable scaffolds for cartilage regeneration is reported. We expect this study will facilitate the development of cartilage tissue engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626041PMC
http://dx.doi.org/10.3390/ma14226804DOI Listing

Publication Analysis

Top Keywords

light curing
8
cartilage
8
articular cartilage
8
joint replacement
8
cartilage tissue
8
tissue engineering
8
stem cell
8
approximate optimization
4
optimization study
4
study light
4

Similar Publications

Cartilage repair remains a formidable challenge because of its limited regenerative capacity. Construction of a biomimetic hydrogel matrix that can induce cell aggregation is a promising therapeutic option. Cell aggregates are more beneficial than dissociated cells for improving survival and chondrogenic differentiation, thereby facilitating cartilage repair.

View Article and Find Full Text PDF

Factors Affecting Growth and Survival of in Onion Extracts and Onion Bulbs.

Foods

December 2024

Department of Food Science and Technology, Texas A&M AgriLife Research, College Station, TX 77843, USA.

This study investigated the survival and growth of in onion extracts and bulbs. The inhibition or retardation of growth by extracts of red, white, and yellow onions was tested against the onion germplasm and exposure to different light spectra during curing. Separately, survival of Newport was tested on red, white, and yellow onion bulbs on the external and internal onion layers with a syringe and needle.

View Article and Find Full Text PDF

The Impact of an MDP-Containing Primer on the Properties of Zinc Oxide Networks Infiltrated with BisGMA-TEGDMA and UDMA-TEGDMA Polymers.

Materials (Basel)

December 2024

Department of Prosthodontics, Propaedeutics and Dental Materials, School of Dentistry, Christian-Albrechts University at Kiel, Arnold-Heller-Straße 16, 24105 Kiel, Germany.

This study was conducted to evaluate the material properties of polymer-infiltrated zinc oxide networks (PICN) and the effect of using a phosphate monomer-containing primer applied before polymer infiltration. A total of 148 ZnO-network (zinc oxide) specimens were produced: = 74 were treated with a primer before polymer infiltration and light curing, while the remaining specimens were untreated. Each group was divided into two subgroups ( = 37) based on the infiltrating polymer: UDMA (aliphatic urethane-dimethacrylates)-TEGDMA (triethylene glycol-dimethacrylate) or BisGMA (bisphenol A-glycidyl-methacrylate)-TEGDMA.

View Article and Find Full Text PDF

Recent studies have identified microneedle (MN) arrays as promising alternatives for transdermal drug delivery. This study investigated the properties of novel staggered MN arrays design featuring two distinct heights of MNs. The staggered MN arrays were precisely fabricated via PμSL light-cured 3D printing technology.

View Article and Find Full Text PDF

Synthesis and Characterization of UV-Curable Resin with High Refractive Index for a Luminance-Enhancing Prism Film.

Polymers (Basel)

December 2024

Department of Chemical Engineering, Kwangwoon University, 20, Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea.

A novel monomer, 9-bis[4-(2-hydroxyethoxy)phenyl]fluorene di(mercaptopropionate), with a highly refractive index, purity, and excellent UV-curable properties, is synthesized through an optimized Fischer esterification process, reacting 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene with 3-mercaptopropionic acid. The structural characterization of this monomer is performed using Fourier-transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, high-performance liquid chromatography, and liquid chromatography-mass spectrometry. The synthesis conditions are optimized using a design-of-experiments approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!