A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Green Synthesis of Hexagonal Hematite (α-FeO) Flakes Using Pluronic F127-Gelatin Template for Adsorption and Photodegradation of Ibuprofen. | LitMetric

Hematite (α-FeO) with uniform hexagonal flake morphology has been successfully synthesized using a combination of gelatin as natural template with F127 via hydrothermal method. The resulting hematite was investigated as adsorbent and photocatalyst for removal of ibuprofen as pharmaceutical waste. Hexagonal flake-like hematite was obtained following calcination at 500 °C with the average size was measured at 1-3 µm. Increasing the calcination temperature to 700 °C transformed the uniform hexagonal structure into cubic shape morphology. Hematite also showed high thermal stability with increasing the calcination temperatures; however, the surface area was reduced from 47 m/g to 9 m/g. FTIR analysis further confirmed the formation Fe-O-Fe bonds, and the main constituent elements of Fe and O were observed in EDX analysis for all samples. α-FeO samples have an average adsorption capacity of 55-25.5 mg/g at 12-22% of removal efficiency when used as adsorbent for ibuprofen. The adsorption capacity was reduced as the calcination temperatures increased due to the reduction of available surface area of the hexagonal flakes after transforming into cubes. Photocatalytic degradation of ibuprofen using hematite flakes achieved 50% removal efficiency; meanwhile, combination of adsorption and photocatalytic degradation further removed 80% of ibuprofen in water/hexane mixtures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8618463PMC
http://dx.doi.org/10.3390/ma14226779DOI Listing

Publication Analysis

Top Keywords

hematite α-feo
8
ibuprofen hematite
8
uniform hexagonal
8
increasing calcination
8
calcination temperatures
8
surface area
8
adsorption capacity
8
removal efficiency
8
photocatalytic degradation
8
hematite
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!