This paper presents a comprehensive evaluation on self-compacting (SC) mortars incorporating 0, 1, 3, and 5% alumina nanoparticles (NA) as well as 0% and 30% rice husk ash (RHA) used as Portland cement replacement. To evaluate the workability, mechanical, and durability performance of SC mortars incorporating NA and RHA, the fresh properties (slump flow diameter and V-funnel flow time), hardened properties (compressive strength, flexural strength, and ultrasonic pulse velocity), and durability properties (water absorption, rapid chloride permeability, and electrical resistivity) were determined. The results indicated that the addition of NA and RHA has negligible effect on the workability and water absorption rate of the SC mortars. However, significant compressive and flexural strength development was observed in the SC mortars treated with NA or the combination of NA and RHA. The introduction of RHA and NA also reduced the rapid chloride permeability and enhanced the electrical resistivity of the SC mortars significantly. It is concluded that the coexistence of 30% RHA and 3% NA as cement replacement in SC mortars can provide the best mechanical and durability performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8619333 | PMC |
http://dx.doi.org/10.3390/ma14226778 | DOI Listing |
ACS Mater Au
January 2025
Liquid Crystal Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India.
Polymer-dispersed liquid crystals (PDLCs) stand at the intersection of polymer science and liquid crystal technology, offering a unique blend of optical versatility and mechanical durability. These composite materials are composed of droplets of liquid crystals interspersed in a matrix of polymeric materials, harnessing the optical properties of liquid crystals while benefiting from the structural integrity of polymers. The responsiveness of LCs combined with the mechanical rigidity of polymers make polymer/LC composites-where the polymer network or matrix is used to stabilize and modify the LC phase-extremely important for scientists developing novel adaptive optical devices.
View Article and Find Full Text PDFJ Cardiovasc Electrophysiol
January 2025
Second Department of Internal Medicine, University of Toyama, Toyama, Japan.
Mater Horiz
January 2025
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, People's Republic of China.
While reversible information encryption and decryption are readily achievable with hydrogels, this process presents a significant challenge when applied to elastic polymer films. This is due to the inherent chemical stability of anhydrous polymer films which significantly increases the difficulty of information writing. In this study, we propose a solvent-free radical polymerization method for chemical patterning on the elastic film of poly(styrene-butadiene-styrene) (SBS).
View Article and Find Full Text PDFLangmuir
January 2025
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
Palm leaf manuscripts, crafted from specially treated palm leaves, are invaluable historical documents. However, they degrade and tend to become brittle over time. To date, plant essential oils and glycerin are the used materials to improve the flexibility of palm leaf manuscripts, but the effective duration of these materials is short due to their volatility.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
The surface characteristics of scaffolds utilized in bone tissue engineering profoundly influence subsequent cellular response. This study investigated the efficacy of applying a gelatin coat to the surface of aminolysis surface-modified scaffolds fabricated through 3D printing with a polycaprolactone/hydroxyapatite nanocomposite, employing the hot-melt extrusion FDM technique. Initially, aminolysis surface modification using hexamethylenediamine enhanced surface hydrophilicity by introducing amine functional groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!