Mining is an essential activity for obtaining materials necessary for the well-being and development of society. However, this activity produces important environmental impacts that must be controlled. More specifically, there are different soils near new or abandoned mining productions that have been contaminated with potentially toxic elements, and currently represent an important environmental problem. In this research, a contaminated soil from the mining district of Linares was studied for its use as a raw material for the conforming of ceramic materials, bricks, dedicated to construction. Firstly, the contaminated soil was chemically and physically characterized in order to evaluate its suitability. Subsequently, different families of samples were conformed with different percentages of clay and contaminated soil. Finally, the conformed ceramics were physically and mechanically characterized to examine the variation produced in the ceramic material by the incorporation of the contaminated soil. In addition, in this research, leachate tests were performed according to the TCLP method determining whether encapsulation of potentially toxic elements in the soil occurs. The results showed that all families of ceramic materials have acceptable physical properties, with a soil percentage of less than 80% being acceptable to obtain adequate mechanical properties and a maximum of 70% of contaminated soil to obtain acceptable leachate according to EPA regulations. Therefore, the maximum percentage of contaminated soil that can be incorporated into the ceramic material is 70% in order to comply with all standards. Consequently, this research not only avoids the contamination that contaminated soil can produce, but also valorizes this element as a raw material for new materials, avoiding the extraction of clay and reducing the environmental impact.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8623602 | PMC |
http://dx.doi.org/10.3390/ma14226740 | DOI Listing |
Environ Sci Technol
January 2025
School of Environmental Science and Engineering, Shenzhen Key Laboratory of Municipal Solid Waste Recycling Technology and Management, Southern University of Science and Technology, Shenzhen 518055, China.
Solid-liquid biphasic absorbents are a promising solution for overcoming the high-energy consumption challenge faced by liquid amine-based CO capture technologies. However, their practical applications are often hindered by difficulties in separating viscous solid-phase products. This study introduces a novel nonaqueous absorbent system (PD/PZ/NMP) composed of 4-amino-1-methylpiperidine (PD), piperazine (PZ), and -methyl-2-pyrrolidone (NMP), engineered to produce easily separable powdery products.
View Article and Find Full Text PDFAtmos Chem Phys
September 2022
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
Condensable particulate matter (CPM) emitted from stationary combustion and mobile sources exhibits high emissions and a large proportion of organic components. However, CPM is not generally measured when conducting emission surveys of PM in most countries, including China. Consequently, previous emission inventories have not included emission rates for CPM.
View Article and Find Full Text PDFAtmos Chem Phys
December 2022
Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27606, USA.
Satellite observations of tropospheric NO columns can provide top-down observational constraints on emissions estimates of nitrogen oxides (NO ). Mass-balance-based methods are often applied for this purpose but do not isolate near-surface emissions from those aloft, such as lightning emissions. Here, we introduce an inverse modeling framework that couples satellite chemical data assimilation to a chemical transport model.
View Article and Find Full Text PDFAtmos Chem Phys
May 2023
Department of Physics, University of Texas at El Paso, El Paso, Texas, USA.
Chemical mechanisms describe the atmospheric transformations of organic and inorganic species and connect air emissions to secondary species such as ozone, fine particles, and hazardous air pollutants (HAPs) like formaldehyde. Recent advances in our understanding of several chemical systems and shifts in the drivers of atmospheric chemistry warrant updates to mechanisms used in chemical transport models such as the Community Multiscale Air Quality (CMAQ) modeling system. This work builds on the Regional Atmospheric Chemistry Mechanism version 2 (RACM2) and develops the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM) version 1.
View Article and Find Full Text PDFJ Water Resour Plan Manag
June 2024
USEPA, Office of Research and Development, Center for Environmental Solutions and Emergency Response (CESER), 26W Martin Luther King Dr., Cincinnati, OH 45268.
Climate change brings intense hurricanes and storm surges to the US Atlantic coast. These disruptive meteorological events, combined with sea level rise (SLR), inundate coastal areas and adversely impact infrastructure and environmental assets. Thus, storm surge projection and associated risk quantification are needed in coastal adaptation planning and emergency management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!