A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Ready-to-Use Metal-Supported Bilayer Lipid Membrane Biosensor for the Detection of Phenol in Water. | LitMetric

A Ready-to-Use Metal-Supported Bilayer Lipid Membrane Biosensor for the Detection of Phenol in Water.

Membranes (Basel)

Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, University of Piraeus, 80 Karaoli and Dimitriou Str., 18534 Piraeus, Greece.

Published: November 2021

This work presents a novel metal-supported bilayer lipid membrane (BLM) biosensor built on tyrosinase to quantitate phenol. The detection strategy is based on the enzyme-analyte initial association and not the commonly adopted monitoring of the redox cascade reactions; such an approach has not been proposed in the literature to date and offers many advantages for environmental monitoring with regard to sensitivity, selectivity, reliability and assay simplicity. The phenol sensor developed herein showed good analytical and operational characteristics: the detection limit (signal-to-noise ratio = 3) was 1.24 pg/mL and the sensitivity was 33.45 nA per pg/mL phenol concentration. The shelf life of the tyrosinase sensor was 12 h and the lifetime (in consecutive assays) was 8 h. The sensor was reversible with bathing at pH 8.5 and could be used for eight assay runs in consecutive assays. The validation in real water samples showed that the sensor could reliably detect 2.5 ppb phenol in tap and river water and 6.1 ppb phenol in lake water, without sample pretreatment. The prospects and applicability of the proposed biosensor and the underlying technology are also discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8622659PMC
http://dx.doi.org/10.3390/membranes11110871DOI Listing

Publication Analysis

Top Keywords

metal-supported bilayer
8
bilayer lipid
8
lipid membrane
8
consecutive assays
8
ppb phenol
8
phenol
6
ready-to-use metal-supported
4
membrane biosensor
4
biosensor detection
4
detection phenol
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!