Recent Progress and Challenges in Hollow Fiber Membranes for Wastewater Treatment and Resource Recovery.

Membranes (Basel)

Faculty of Civil Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Kuantan 26300, Pahang, Malaysia.

Published: October 2021

Membrane processes have been extensively employed in diverse applications, specifically in industrial wastewater treatment. The technological development in membrane processes has rapidly advanced and accelerated beyond its common principle and operation. Tremendous efforts have been made in the advancement of membrane materials, fabrication method, membrane modification and integration with other technologies that can augment the existing membrane processes to another level. This review presents the recent development of hollow fiber membranes applied in wastewater treatment and resource recovery. The membrane working principles and treatment mechanism were discussed thoroughly, with the recent development of these hollow fiber membranes highlighted based on several types of membrane application. The current challenges and limitations which may hinder this technology from expanding were critically described to offer a better perspective for this technology to be adopted in various potential applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8617921PMC
http://dx.doi.org/10.3390/membranes11110839DOI Listing

Publication Analysis

Top Keywords

hollow fiber
12
fiber membranes
12
wastewater treatment
12
membrane processes
12
treatment resource
8
resource recovery
8
recovery membrane
8
development hollow
8
membrane
7
progress challenges
4

Similar Publications

A novel helically twisted photonic crystal fiber (PCF) is designed and proposed for sensing toxic gases with refractive indices ranging from 1.00 to 1.08.

View Article and Find Full Text PDF

Many hydrofluorocarbon refrigerants used in air-conditioning and refrigeration equipment are being phased out based on international restrictions to reduce global warming. Over 1 billion kilograms of hydrofluorocarbons are in use, and recycling is imperative to preventing the release of these greenhouse gases into the atmosphere. We report on composite hollow fiber membranes that can efficiently separate a mixture of difluoromethane and pentafluoroethane that is used worldwide in air conditioners.

View Article and Find Full Text PDF

Learning from history to improve the performance of blood purification devices and dialysis membranes: from engineering points of view.

J Artif Organs

January 2025

Department of Human Environmental Science, Shonan Institute of Technology, 1-1-25 Tsujido-Nishi-Kaigan, Fujisawa, Kanagawa, 251-8511, Japan.

Abel JJ, Rowntree LG and Turner BB (Baltimore Trio) proposed the concept of vividiffusion and developed a vividiffusion apparatus in 1912. In a 1914 paper, they laid out the most important rule of device design. We named this rule an ART law taken from the initials of the Baltimore Trio.

View Article and Find Full Text PDF

The impact of heteroresistance on tuberculosis (TB) treatment outcomes is unclear, as is the role of different rifampin and isoniazid exposures on developing resistance mutations. Hollow fiber system model of TB (HFS-TB) units were inoculated with drug-susceptible () and treated with isoniazid and rifampin exposure identified in a clinical trial as leading to treatment failure and acquired drug resistance. Systems were sampled for drug concentration measurements, estimation of total and drug-resistant , and small molecule overlapping reads (SMOR) analysis for the detection of heteroresistance.

View Article and Find Full Text PDF

We investigate the enhanced terahertz generation in the organic crystal BNA when pumped by compressed high-energy ytterbium laser pulses. By compressing the pump pulses from 170 fs down to 43 fs using an argon-filled hollow-core fiber and chirped mirrors, the terahertz conversion efficiency is increased by 2.4 times, leading to the generation of multi-microjoule terahertz pulses with a frequency spectrum almost twice as wide, extending up to 19 THz.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!