Molecular Mechanisms of Hypertensive Nephropathy: Renoprotective Effect of Losartan through Hsp70.

Cells

IMBECU-CONICET, Instituto de Medicina y Biología Experimental de Cuyo-Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza 5500, Argentina.

Published: November 2021

Hypertensive nephrosclerosis is the second most common cause of end-stage renal disease after diabetes. For years, hypertensive kidney disease has been focused on the afferent arterioles and glomeruli damage and the involvement of the renin angiotensin system (RAS). Nonetheless, in recent years, novel evidence has demonstrated that persistent high blood pressure injures tubular cells, leading to epithelial-mesenchymal transition (EMT) and tubulointerstitial fibrosis. Injury primarily determined at the glomerular level by hypertension causes changes in post-glomerular peritubular capillaries that in turn induce endothelial damage and hypoxia. Microvasculature dysfunction, by inducing hypoxic environment, triggers inflammation, EMT with epithelial cells dedifferentiation and fibrosis. Hypertensive kidney disease also includes podocyte effacement and loss, leading to disruption of the filtration barrier. This review highlights the molecular mechanisms and histologic aspects involved in the pathophysiology of hypertensive kidney disease incorporating knowledge about EMT and tubulointerstitial fibrosis. The role of the Hsp70 chaperone on the angiotensin II-induced EMT after angiotensin II type 1 receptor (ATR) blockage, as a possible molecular target for therapeutic strategy against hypertensive renal damage is discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8619557PMC
http://dx.doi.org/10.3390/cells10113146DOI Listing

Publication Analysis

Top Keywords

hypertensive kidney
12
kidney disease
12
molecular mechanisms
8
emt tubulointerstitial
8
tubulointerstitial fibrosis
8
hypertensive
6
mechanisms hypertensive
4
hypertensive nephropathy
4
nephropathy renoprotective
4
renoprotective losartan
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!