Upon a sudden transition from low to high light, electrons transported from photosystem II (PSII) to PSI should be rapidly consumed by downstream sinks to avoid the over-reduction of PSI. However, the over-reduction of PSI under fluctuating light might be accelerated if primary metabolism is restricted by low stomatal conductance. To test this hypothesis, we measured the effect of diurnal changes in stomatal conductance on photosynthetic regulation under fluctuating light in tomato () and common mulberry (). Under conditions of high stomatal conductance, we observed PSI over-reduction within the first 10 s after transition from low to high light. Lower stomatal conductance limited the activity of the Calvin-Benson-Bassham cycle and aggravated PSI over-reduction within 10 s after the light transition. We also observed PSI over-reduction after transition from low to high light for 30 s at the low stomatal conductance typical of the late afternoon, indicating that low stomatal conductance extends the period of PSI over-reduction under fluctuating light. Therefore, diurnal changes in stomatal conductance significantly affect the PSI redox state under fluctuating light. Moreover, our analysis revealed an unexpected inhibition of cyclic electron flow by the severe over-reduction of PSI seen at low stomatal conductance. In conclusion, stomatal conductance can have a large effect on thylakoid reactions under fluctuating light.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621556PMC
http://dx.doi.org/10.3390/cells10113128DOI Listing

Publication Analysis

Top Keywords

stomatal conductance
40
fluctuating light
24
psi over-reduction
20
low stomatal
16
transition low
12
low high
12
high light
12
over-reduction psi
12
light
10
stomatal
10

Similar Publications

Effects of Drought Stress at the Booting Stage on Leaf Physiological Characteristics and Yield of Rice.

Plants (Basel)

December 2024

Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.

Drought stress is a major environmental constraint that limits rice ( L.) production worldwide. In this study, we investigated the effects of drought stress at the booting stage on rice leaf physiological characteristics and yield.

View Article and Find Full Text PDF

Cadmium (Cd) is one of the foremost phytotoxic elements. Its proportion in agricultural soil is increasing critically due to anthropogenic activities. Cd stress is a major crop production threat affecting food security globally.

View Article and Find Full Text PDF

Stomatal and Hydraulic Redundancy Allows Woody Species to Adapt to Arid Environments.

Plant Cell Environ

January 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.

Functional redundancy is considered a pivotal mechanism for maintaining the adaptability of species by preventing the loss of key functions in response to dehydration. However, we still lack a comprehensive understanding of the redundancy of leaf hydraulic systems along aridity gradients. Here, photosynthesis (A), stomatal conductance (g) and leaf hydraulic conductance (K) during dehydration were measured in 20 woody species from a range of aridity index (AI) conditions and growing in a common garden to quantify stomatal redundancy (SR), the extent of stomatal opening beyond the optimum required for maximum photosynthesis (A), leaf hydraulic redundancy (HR), and the extent of leaf hydraulic conductance (K) beyond the optimum required for maximum g (g).

View Article and Find Full Text PDF

Resolving the contrasting leaf hydraulic adaptation of C and C grasses.

New Phytol

January 2025

Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA.

Grasses are exceptionally productive, yet their hydraulic adaptation is paradoxical. Among C grasses, a high photosynthetic rate (A) may depend on higher vein density (D) and hydraulic conductance (K). However, the higher D of C grasses suggests a hydraulic surplus, given their reduced need for high K resulting from lower stomatal conductance (g).

View Article and Find Full Text PDF

Dose-responsive phytotoxicity and oxidative stress induced by metal-organic framework PCN-224 in Arabidopsis thaliana seedlings.

J Hazard Mater

December 2024

Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea. Electronic address:

Metal-organic frameworks (MOFs) are advanced porous materials composed of metal ions and organic ligands, known for their unique structures and fascinating physio-chemical properties. To ensure their safe production and applications, it is crucial to thoroughly investigate their toxicity and environmental hazards. However, the potential risks of MOFs, particularly their impact on plants remained underexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!