Bone and bone marrow are among the most frequent metastatic sites of cancer. The occurrence of bone metastasis is frequently associated with a dismal disease outcome. The prevention and therapy of bone metastases is a priority in the treatment of cancer patients. However, current therapeutic options for patients with bone metastatic disease are limited in efficacy and associated with increased morbidity. Therefore, most current therapies are mainly palliative in nature. A better understanding of the underlying molecular pathways of the bone metastatic process is warranted to develop novel, well-tolerated and more successful treatments for a significant improvement of patients' quality of life and disease outcome. In this review, we provide comparative mechanistic insights into the bone metastatic process of various solid tumors, including pediatric cancers. We also highlight current and innovative approaches to biologically targeted therapy and immunotherapy. In particular, we discuss the role of the bone marrow microenvironment in the attraction, homing, dormancy and outgrowth of metastatic tumor cells and the ensuing therapeutic implications. Multiple signaling pathways have been described to contribute to metastatic spread to the bone of specific cancer entities, with most knowledge derived from the study of breast and prostate cancer. However, it is likely that similar mechanisms are involved in different types of cancer, including multiple myeloma, primary bone sarcomas and neuroblastoma. The metastatic rate-limiting interaction of tumor cells with the various cellular and noncellular components of the bone-marrow niche provides attractive therapeutic targets, which are already partially exploited by novel promising immunotherapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616226PMC
http://dx.doi.org/10.3390/cells10112944DOI Listing

Publication Analysis

Top Keywords

bone metastatic
12
bone
11
bone metastases
8
bone marrow
8
disease outcome
8
metastatic process
8
tumor cells
8
metastatic
7
cancer
5
mechanisms diagnosis
4

Similar Publications

Background: Minimally invasive dentistry is now becoming the forefront of restorative dentistry, involving less traumatic treatment protocols, conservation of tooth structure and surrounding tissues, enhancing the long-term survivability of treated teeth, and improving the overall quality of life for patients.

Objective: The current case report was conducted to evaluate acquiring deep subgingival interproximal carious lesions by the mean of thermacut bur gingivectomy, in terms of patient satisfaction through pain evaluation, Bleeding on Probing, Pocket Depth, Crestal Bone Level evaluation, and restoration evaluation using modified USPHS criteria.

Material And Methods: A patient with a deep proximal cavity in the posterior tooth was thoroughly examined and underwent Thermacut Bur Gingivectomy (TBG) after caries removal followed by direct resin composite restoration of the prepared cavity.

View Article and Find Full Text PDF

Introduction: Patients undergoing surgical procedures are often prone to developing acute stress disorder (ASD) postoperatively. Presently, oxytocin nasal spray has shown significant potential in the treatment of stress-related neuropsychiatric diseases. However, there are few reports on the use of oxytocin nasal spray in postoperative ASD, a condition that can potentially develop into a high-risk factor for post-traumatic stress disorder.

View Article and Find Full Text PDF

Buried or exposed kirschner wires in paediatric upper extremity fracture fixation: A systematic review and meta-analysis of infection rates and complications.

Injury

January 2025

Department of Trauma and Orthopaedic Surgery, University Hospitals Plymouth NHS Trust, Derriford Hospital, Derriford Road, Plymouth, Devon, PL6 8DH, United Kingdom. Electronic address:

Background: Paediatric upper limb fractures are commonly treated with Kirschner (K) wire fixation, which can be buried or left exposed. Although both techniques are widely used, controversy remains regarding infection risk, complications, and other clinical outcomes between buried and exposed K-wires. This systematic review and meta-analysis aimed to compare infection rates and secondary outcomes between buried and exposed K-wires in paediatric upper limb fractures located distal to and including the elbow, and proximal to the carpus.

View Article and Find Full Text PDF

The biology centered around the TGF-beta type I receptor Activin Receptor-Like Kinase (ALK)1 (encoded by ACVRL1) has been almost exclusively based on its reported endothelial expression pattern since its first functional characterization more than two decades ago. Here, in efforts to better define the therapeutic context in which to use ALK1 inhibitors, we uncover a population of tumor-associated macrophages (TAMs) that, by virtue of their unanticipated Acvrl1 expression, are effector targets for adjuvant anti-angiogenic immunotherapy in mouse models of metastatic breast cancer. The combinatorial benefit depended on ALK1-mediated modulation of the differentiation potential of bone marrow-derived granulocyte-macrophage progenitors, the release of CD14+ monocytes into circulation, and their eventual extravasation.

View Article and Find Full Text PDF

Bone Marrow Adipocytes as Novel Regulators of Metabolic Homeostasis: Clinical Consequences of Bone Marrow Adiposity.

Curr Obes Rep

January 2025

Maine Medical Center Research Institute, Maine Medical Center, 81 Research Drive, Scarborough, ME, 04074, USA.

Purpose Of Review: Bone marrow adipose tissue is a distinctive fat depot located within the skeleton, with the potential to influence both local and systemic metabolic processes. Although significant strides have been made in understanding bone marrow adipose tissue over the past decade, many questions remain regarding their precise lineage and functional roles.

Recent Findings: Recent studies have highlighted bone marrow adipose tissue's involvement in continuous cross-talk with other organs and systems, exerting both endocrine and paracrine functions that play a crucial role in metabolic homeostasis, skeletal remodeling, hematopoiesis, and the progression of bone metastases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!