Central nervous system (CNS) tumours comprise 25% of the paediatric cancer diagnoses and are the leading cause of cancer-related death in children. Current treatments for paediatric CNS tumours are far from optimal and fail for those that relapsed or are refractory to treatment. Besides, long-term sequelae in the developing brain make it mandatory to find new innovative approaches. Chimeric antigen receptor T cell (CAR T) therapy has increased survival in patients with B-cell malignancies, but the intrinsic biological characteristics of CNS tumours hamper their success. The location, heterogeneous antigen expression, limited infiltration of T cells into the tumour, the selective trafficking provided by the blood-brain barrier, and the immunosuppressive tumour microenvironment have emerged as the main hurdles that need to be overcome for the success of CAR T cell therapy. In this review, we will focus mainly on the characteristics of the deadliest high-grade CNS paediatric tumours (medulloblastoma, ependymoma, and high-grade gliomas) and the potential of CAR T cell therapy to increase survival and patients' quality of life.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616287 | PMC |
http://dx.doi.org/10.3390/cells10112940 | DOI Listing |
Exp Cell Res
December 2024
Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Sciences and Advanced Technology in Biology, University of Science and Culture, Tehran, Iran. Electronic address:
Hepatocellular carcinoma (HCC) is a global health issue due to its late diagnosis and high recurrence rate. The early detection and diagnosis of HCC with specific and sensitive biomarkers and using novel treatment approaches to improve patient outcomes are essential. Glypican-3 (GPC-3) is a cell surface proteoglycan that is overexpressed in many tumors, including HCC.
View Article and Find Full Text PDFCancer Lett
December 2024
Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois Chicago, Chicago, IL 60612, USA; Research Unit, Jesse Brown VA Medical Center, Chicago, IL 60612, USA. Electronic address:
The oncoimmunology research has witnessed notable advancements in recent years. Reshaping the tumor microenvironment (TME) approach is an effective method to improve antitumor immune response. The T cell-mediated antitumor response is crucial for favorable therapeutic outcomes in several cancers.
View Article and Find Full Text PDFOncoimmunology
December 2025
Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre, Madrid, Spain.
Despite recent advances in immunotherapy against B cell malignancies such as BCMA (B cell maturation antigen) and CD19-targeted treatments using soluble T cell-engaging (TCE) antibodies or chimeric antigen receptor T cells (CAR-T), there is still an important number of patients experiencing refractory/relapsed (R/R) disease. Approaches to avoid tumor-intrinsic mechanisms of resistance such as immune pressure-mediated antigen downmodulation, are being broadly investigated. These strategies include BCMA/CD19 dual-targeting therapies, which may be of particular interest to patients with B cell lymphoma and multiple myeloma, where a specific double-positive immature subpopulation is commonly associated with poor prognosis and poor response to current treatments.
View Article and Find Full Text PDFFront Oncol
December 2024
Atrium Health Levine Cancer Institute, Wake Forest University School of Medicine, Charlotte, NC, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!