Tomato Yellow Leaf Curl Virus (TYLCV) Promotes Plant Tolerance to Drought.

Cells

Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel.

Published: October 2021

A growing body of research points to a positive interplay between viruses and plants. Tomato yellow curl virus (TYLCV) is able to protect tomato host plants against extreme drought. To envisage the use of virus protective capacity in agriculture, TYLCV-resistant tomato lines have to be infected first with the virus before planting. Such virus-resistant tomato plants contain virus amounts that do not cause disease symptoms, growth inhibition, or yield loss, but are sufficient to modify the metabolism of the plant, resulting in improved tolerance to drought. This phenomenon is based on the TYLCV-dependent stabilization of amounts of key osmoprotectants induced by drought (soluble sugars, amino acids, and proteins). Although in infected TYLCV-susceptible tomatoes, stress markers also show an enhanced stability, in infected TYLCV-resistant plants, water balance and osmolyte homeostasis reach particularly high levels. These tomato plants survive long periods of time during water withholding. However, after recovery to normal irrigation, they produce fruits which are not exposed to drought, similarly to the control plants. Using these features, it might be possible to cultivate TYLCV-resistant plants during seasons characterized by water scarcity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616339PMC
http://dx.doi.org/10.3390/cells10112875DOI Listing

Publication Analysis

Top Keywords

tomato yellow
8
curl virus
8
virus tylcv
8
tolerance drought
8
tomato plants
8
tylcv-resistant plants
8
plants
7
tomato
6
virus
5
drought
5

Similar Publications

Characterisation of a Betasatellite Associated With Tomato Yellow Leaf Curl Guangdong Virus and Discovery of an Unusual Modulation of Virus Infection Associated With C4 Protein.

Mol Plant Pathol

January 2025

Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China.

Tomato yellow leaf curl Guangdong virus (TYLCGdV), a monopartite begomovirus first identified in 2004, remains poorly characterised. In this study, we demonstrate that TYLCGdV associates with a betasatellite, TYLCGdB, and the βC1 protein encoded by TYLCGdB is essential for symptom development. We also explore the role of TYLCGdV C4 protein by generating a C4-deficient infectious clone (TYLCGdV), revealing a dynamic role for TYLCGdV C4.

View Article and Find Full Text PDF

This study investigated the impacts of hot water treatment (HWT) at 50°C or 25°C for 5 min and high-temperature ethylene (HTE) exposure at varying temperatures (20°C, 30°C, or 35°C) and durations (24, 48, or 72 h) on the postharvest quality and antioxidant properties of mature green tomatoes (MG). Color changes, physicochemical characteristics, antioxidant compounds, and overall antioxidant ability were assessed. HWT increased β-carotene levels and oxygen radical absorbance capacity (ORAC) while preserving color metrics, despite later HTE exposure.

View Article and Find Full Text PDF

Physicochemical and aromatic properties of iron-enriched tomato paste during storage.

Food Res Int

January 2025

Department of Agricultural, Forest and Food Sciences (DiSAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco TO, Italy. Electronic address:

In this study, tomato paste was fortified with iron compounds at 25, 50, and 75 ppm concentrations. The effect of adding these micronutrient iron concentrations on the paste's physical, mechanical, aromatic, and chemical properties was evaluated every 15 days over a 60-day, storage period. The results indicated a gradual decrease in pH, total soluble solids (TSS), and taste index, alongside an increase in total acidity (TA) for all treatments throughout the storage period.

View Article and Find Full Text PDF

Marker-assisted selection in segregating populations of tomatoes for resistance to TYLCV, ToMV, and Fusarium wilt.

Mol Biol Rep

January 2025

Department of Agronomy and Plant Breeding Sciences, Agricultural College of Aburaihan, University of Tehran, Pakdasht, Iran.

Background: Tomato yellow leaf curl virus (TYLCV), tomato mosaic virus (ToMV), and Fusarium wilt are three of tomatoes' most important viral and fungal diseases.

Methods And Results: In this study, the application of molecular markers associated with tomato yellow leaf curl virus resistance gene (Ty1), tomato mosaic virus resistance gene (Tm2), and Fusarium wilt resistance gene (I-1) (linked marker) were evaluated. In order to optimize and use SNP markers (by HRM diagnostic method) and SCAR markers, segregating populations of tomatoes were produced by self-pollination of commercial hybrid cultivars.

View Article and Find Full Text PDF

Background/objectives: This study explores the significance of beetroot and tomato juices, two prominent health-promoting foods known for their rich nutrient content and bioactive compounds. The growing consumer awareness of the link between diet and well-being emphasizes the need for food producers to align their products with health-conscious preferences. The aim of this research was to assess the composition, color, and sensory attributes-specifically color, taste, and odor-of various commercially available beetroot and tomato juices and to evaluate their acceptability among consumers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!