Proteasome inhibitors (PIs) are approved backbone treatments in multiple myeloma. More recently, inhibition of proteasome activity with the PI bortezomib has been clinically evaluated as a novel treatment strategy in pediatric acute lymphoblastic leukemia (ALL). However, we lack a marker that could identify ALL patients responding to PI-based therapy. By using a set of activity-based proteasome probes in conjunction with cytotoxicity assays, we show that B-cell precursor ALL (BCP-ALL), in contrast to T-ALL, demonstrates an increased activity of immunoproteasome over constitutive proteasome, which correlates with high ex vivo sensitivity to the PIs bortezomib and ixazomib. The novel selective PI LU015i-targeting immunoproteasome β5i induces cytotoxicity in BCP-ALL containing high β5i activity, confirming immunoproteasome activity as a novel therapeutic target in BCP-ALL. At the same time, cotreatment with β2-selective proteasome inhibitors can sensitize T-ALL to currently available PIs, as well as to β5i selective PI. In addition, levels of total and spliced forms of XBP1 differ between BCP-ALL and T-ALL, and only in BCP-ALL does high-spliced XBP1 correlate with sensitivity to bortezomib. Thus, in BCP-ALL, high immunoproteasome activity may serve as a predictive marker for PI-based treatment options, potentially combined with XBP1 analyses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616377PMC
http://dx.doi.org/10.3390/cells10112853DOI Listing

Publication Analysis

Top Keywords

immunoproteasome activity
12
proteasome inhibitors
12
high immunoproteasome
8
bcp-all high
8
activity
6
proteasome
6
bcp-all
6
high
4
activity sxbp1
4
sxbp1 pediatric
4

Similar Publications

Background: Proteasomes degrade intracellular proteins. Different proteasome forms were identified. Proteasome inhibitors are used in cancer therapy, and novel drugs directed to specific proteasome forms are developed.

View Article and Find Full Text PDF

Background: Histone deacetylase (HDAC) inhibitors have been reported to exhibit immunomodulatory activities, including the upregulation of major histocompatibility complex class I (MHC class I). Although the immunoproteasome plays a pivotal role in MHC class I antigen presentation, its effect on immunotherapy for clear cell renal cell carcinoma (ccRCC) remains unclear.

Methods: This study assessed whether OBP-801, a novel HDAC inhibitor, affects the expression of immunoproteasome subunits and subsequently the MHC class-I-mediated anti-cancer immunity in ccRCC.

View Article and Find Full Text PDF
Article Synopsis
  • Gliomas are the most common type of brain tumors with high malignancy, fast recurrence, and high mortality rates, and current treatments have limited success.
  • Shikonin, a compound from traditional Chinese medicine, has shown effectiveness against gliomas by inducing a type of cell death called necroptosis and reducing markers associated with cancer stem cells.
  • The study explores how Shikonin impacts the proteasome activity and immune proteasome subunits in glioma cells, suggesting its potential as a new treatment option for dealing with these challenging tumors.
View Article and Find Full Text PDF

Synthesis and Application of a Caged Bioluminescent Probe for the Immunoproteasome.

Curr Protoc

November 2024

Department of Pharmaceutical Sciences, University of California, Irvine, California.

Monitoring the catalytic activity of the proteasome and its various isoforms has become increasingly important with the continued development of core particle inhibitors and targeted protein degraders as potential therapies for diseases with high protein accumulation. The immunoproteasome (iCP) is expressed in a variety of diseases due to inflammatory signals, such as interferon-gamma, that alert the cell to begin generating iCP preferentially over the standard proteasome. There is a need to understand iCP activity and expression both in cells and in vivo because it is becoming a widely targeted isoform in a variety of diseases.

View Article and Find Full Text PDF

Adaptation to oxidative stress is essential for maintaining protein and redox homeostasis in mammalian cells. Palmitic acid (PA) plays a central role in oxidative stress and immunoproteasome regulation in podocytes and diabetes, and eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have beneficial impact on diabetes. The role of Nrf2 in adaptation to oxidative stress and regulation of immunoproteasome by PA and EPA/DHA in podocytes and diabetic kidneys is not well defined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!