To enable rapid proliferation, colorectal tumor cells up-regulate epidermal growth factor receptor (EGFR) signaling and aerobic glycolysis, resulting in substantial lactate release into the tumor microenvironment and impaired anti-tumor immune responses. We hypothesized that a nutritional intervention designed to reduce aerobic glycolysis may boost the EGFR-directed antibody (Ab)-based therapy of pre-existing colitis-driven colorectal carcinoma (CRC). CRC development was induced by azoxymethane (AOM) and dextran sodium sulfate (DSS) administration to C57BL/6 mice. AOM/DSS-treated mice were fed a glucose-free, high-protein diet (GFHPD) or an isoenergetic control diet (CD) in the presence or absence of an injection of an anti-EGFR mIgG2a or respective controls. AOM/DSS-treated mice on a GFHPD displayed a reduced systemic glucose metabolism associated with reduced oxidative phosphorylation (OXPHOS) complex IV expression and diminished tumor loads. Comparable but not additive to an anti-EGFR-Ab therapy, the GFHPD was accompanied by enhanced tumoral goblet cell differentiation and decreased colonic PD-L1 and splenic CD3ε, as well as PD-1 immune checkpoint expression. In vitro, glucose-free, high-amino acid culture conditions reduced proliferation but improved goblet cell differentiation of murine and human CRC cell lines MC-38 and HT29-MTX in combination with down-regulation of PD-L1 expression. We here found GFHPD to systemically dampen glycolysis activity, thereby reducing CRC progression with a similar efficacy to EGFR-directed antibody therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616508 | PMC |
http://dx.doi.org/10.3390/cancers13225817 | DOI Listing |
Cancers (Basel)
November 2021
Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Schleswig-Holstein, Germany.
To enable rapid proliferation, colorectal tumor cells up-regulate epidermal growth factor receptor (EGFR) signaling and aerobic glycolysis, resulting in substantial lactate release into the tumor microenvironment and impaired anti-tumor immune responses. We hypothesized that a nutritional intervention designed to reduce aerobic glycolysis may boost the EGFR-directed antibody (Ab)-based therapy of pre-existing colitis-driven colorectal carcinoma (CRC). CRC development was induced by azoxymethane (AOM) and dextran sodium sulfate (DSS) administration to C57BL/6 mice.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
January 2022
Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany; Division of Nutritional Medicine, 1st Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany. Electronic address:
Biochim Biophys Acta Mol Basis Dis
October 2018
Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; University of Milan, Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Milan, Italy.
Glycogen disease type III (GSDIII), a rare incurable autosomal recessive disorder due to glycogen debranching enzyme deficiency, presents with liver, heart and skeletal muscle impairment, hepatomegaly and ketotic hypoglycemia. Muscle weakness usually worsens to fixed myopathy and cardiac involvement may present in about half of the patients during disease. Management relies on careful follow-up of symptoms and diet.
View Article and Find Full Text PDFJ Exp Biol
October 2014
INRA, UR1067 Nutrition Metabolism and Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
Based on the concept of nutritional programming in mammals, we tested whether an acute hyperglucidic-hypoproteic stimulus during first feeding could induce long-term changes in nutrient metabolism in rainbow trout. Trout alevins received during the five first days of exogenous feeding either a hyperglucidic (40% gelatinized starch + 20% glucose) and hypoproteic (20%) diet (VLP diet) or a high-protein (60%) glucose-free diet (HP diet, control). Following a common 105-day period on a commercial diet, both groups were then challenged (65 days) with a carbohydrate-rich diet (28%).
View Article and Find Full Text PDFJ Anim Physiol Anim Nutr (Berl)
June 2011
Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
The influence of a high-protein [HP, 47% of metabolizable energy (ME)] diet on energy balance was evaluated in obese cats allowed ad libitum access to food. Energy intake, body weight, body composition, energy expenditure, and concentrations of hormones and metabolites associated with carbohydrate and lipid metabolism (glucose, insulin, free fatty acids, triglycerides and leptin) were measured in cats after consuming either a moderate protein (MP, 27% of ME) or HP diet for 4 months. Indirect respiration calorimetry showed that resting and total energy expenditure (kJ/day) adjusted for either body weight or lean body mass was increased in cats consuming the HP in relation to MP diets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!