There is a lack of understanding whether plasma levels of anticancer drugs (such as pazopanib) correlate with intra-tumoral levels and whether the plasma compartment is the best surrogate for pharmacokinetic and pharmacodynamic evaluation. Therefore, we aimed to quantify pazopanib concentrations in tumor tissue, to assess the correlation between tumor concentrations and plasma concentrations and between tumor concentrations and efficacy. In this clinical trial, non-metastatic STS patients were treated with neo-adjuvant concurrent radiotherapy and pazopanib. Plasma samples and tumor biopsies were collected, and pazopanib concentrations were measured using liquid chromatography-tandem mass spectrometry. Twenty-four evaluable patients were included. The median pazopanib tumor concentration was 19.2 µg/g (range 0.149-200 µg/g). A modest correlation was found between tumor concentrations and plasma levels of pazopanib ( = 0.41, = 0.049). No correlation was found between tumor concentrations and percentage of viable tumor cells ( > 0.05); however, a trend towards less viable tumor cells in patients with high pazopanib concentrations in tumor tissue was observed in a categorical analysis. Possible explanations for the lack of correlation might be heterogeneity of the tumors and timing of the biopsy procedure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616484PMC
http://dx.doi.org/10.3390/cancers13225780DOI Listing

Publication Analysis

Top Keywords

tumor concentrations
16
pazopanib concentrations
12
concentrations tumor
12
correlation tumor
12
tumor
10
pazopanib
8
plasma levels
8
concentrations
8
tumor tissue
8
concentrations plasma
8

Similar Publications

Magnetic nanoparticles (MNPs) used for magnetic hyperthermia can not only damage tumor cells after elevating to a specific temperature but also provide the temperature required for thermosensitive liposomes (TSL) to release doxorubicin (DOX). MNPs injected into tumor will generate heat under an alternating magnetic field, so the MNPs distribution can determine temperature distribution and further affect the DOX concentration used for tumor therapy. This study proposes an asynchronous injection strategy for this combination therapy in order to improve the DOX concentration value for drug therapy, in which the MNPs are injected into tumor after a certain lagging of TSL injection in order to increase the TSL concentration inside tumor.

View Article and Find Full Text PDF

Discovery of 4,5-dihydro-benzo[g]indazole-based hydroxamic acids as HDAC3/BRD4 dual inhibitors and anti-tumor agents.

Eur J Med Chem

December 2024

Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China. Electronic address:

Concurrent inhibition of HDAC and BRD4, two well-established epigenetic targets for anti-tumor therapy, demonstrates the potential to enhance anti-tumor effects synergistically. The present study involves the development of a series of novel HDAC3/BRD4 dual inhibitors, followed by evaluation of their antitumor efficacy against several tumor models. Guided by scaffold hopping strategy, key pharmacophore of BRD4 inhibitor I-BET-151 was incorporated into an in-house developed HDAC3-selective inhibitor 17h.

View Article and Find Full Text PDF

Enhanced safety and efficacy profile of CD40 antibody upon encapsulation in pHe-triggered membrane-adhesive nanoliposomes.

Nanomedicine (Lond)

January 2025

Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.

Aim: To develop pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL) of CD40a to enhance anti-tumor activity in pancreatic cancer while reducing systemic toxicity.

Materials And Methods: A small library of nanoliposomes (NL) with various lipid compositions were synthesized to prepare pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL). Physical and functional characterization of pHTANL-CD40a was performed via dynamic light scattering (DLS), Transmission Electron Microscopy (TEM), confocal microscopy, and flow cytometry.

View Article and Find Full Text PDF

Cellular metabolism is inextricably linked to transmembrane levels of proton (H), sodium (Na), and potassium (K) ions. Although reduced sodium-potassium pump (Na-K ATPase) activity in tumors directly disturbs transmembrane Na and K levels, this dysfunction is a result of upregulated aerobic glycolysis generating excessive cytosolic H (and lactate) which are extruded to acidify the interstitial space. These oncogene-directed metabolic changes, affecting intracellular Na and H, can be further exacerbated by upregulation of ion exchangers/transporters.

View Article and Find Full Text PDF

Effects of moderate beer consumption on immunity and the gut microbiome in immunosuppressed mice.

Biosci Microbiota Food Health

August 2024

Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China.

Beer contains a variety of bioactive ingredients and trace elements that can regulate bodily functions, and moderate consumption of beer can enhance immune responses. This study aimed to investigate the potential benefits of moderate consumption of alcoholic or non-alcoholic beer on the gut microbiome, immunity, and intestinal barrier function in immunosuppressed BALB/c mice induced by cyclophosphamide (CTX). Model mice with CTX-induced immunosuppression were administered alcoholic or non-alcoholic beer or galacto-oligosaccharides (GOS) for 28 consecutive days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!