To support the implementation of genome-based precision medicine, we developed machine learning models that predict the recurrence of patients with gynecologic cancer in using immune checkpoint inhibitors (ICI) based on clinical and pathologic characteristics, including Lynch syndrome-related screening markers such as immunohistochemistry (IHC) and microsatellite instability (MSI) tests. To accomplish our goal, we reviewed the patient demographics, clinical data, and pathological results from their medical records. Then we identified seven potential characteristics (four MMR IHC [ and ], MSI, Age 60, and tumor size). Following that, predictive models were built based on these variables using six machine learning algorithms: logistic regression (LR), support vector machine (SVM), naive Bayes (NB), random forest (RF), gradient boosting (GB), and extreme gradient boosting (EGB) (XGBoost). The experimental results showed that the RF-based model performed best at predicting gynecologic cancer recurrence, with AUCs of 0.818 and 0.826 for the 5-fold cross-validation (CV) and 5-fold CV with 10 repetitions, respectively. This study provides novel and baseline results about predicting the recurrence of gynecologic cancer in patients using ICI by using machine learning methods based on Lynch syndrome-related screening markers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616351 | PMC |
http://dx.doi.org/10.3390/cancers13225670 | DOI Listing |
Diagn Progn Res
January 2025
Department of Applied Health Sciences, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, UK.
Background: Pressure injuries (PIs) place a substantial burden on healthcare systems worldwide. Risk stratification of those who are at risk of developing PIs allows preventive interventions to be focused on patients who are at the highest risk. The considerable number of risk assessment scales and prediction models available underscores the need for a thorough evaluation of their development, validation, and clinical utility.
View Article and Find Full Text PDFBMC Res Notes
January 2025
Department of Computer Engineering, Chungbuk National University, Chungdae-ro 1, Cheongju, 28644, Republic of Korea.
Background: Drug response prediction can infer the relationship between an individual's genetic profile and a drug, which can be used to determine the choice of treatment for an individual patient. Prediction of drug response is recently being performed using machine learning technology. However, high-throughput sequencing data produces thousands of features per patient.
View Article and Find Full Text PDFInt J Retina Vitreous
January 2025
Department of Retina and Vitreous, Narayana Nethralaya, #121/C, 1st R Block, Chord Road, Rajaji Nagar, Bengaluru, 560010, India.
Purpose: To evaluate the predictive accuracy of various machine learning (ML) statistical models in forecasting postoperative visual acuity (VA) outcomes following macular hole (MH) surgery using preoperative optical coherence tomography (OCT) parameters.
Methods: This retrospective study included 158 eyes (151 patients) with full-thickness MHs treated between 2017 and 2023 by the same surgeon and using the same intraoperative surgical technique. Data from electronic medical records and OCT scans were extracted, with OCT-derived qualitative and quantitative MH characteristics recorded.
BMC Med Inform Decis Mak
January 2025
Department of Nursing, The Affiliated Hospital of Medical College Qingdao University, Qingdao, Shandong, 266003, China.
Background: This systematic review aims to explore the early predictive value of machine learning (ML) models for the progression of gestational diabetes mellitus (GDM) to type 2 diabetes mellitus (T2DM).
Methods: A comprehensive and systematic search was conducted in Pubmed, Cochrane, Embase, and Web of Science up to July 02, 2024. The quality of the studies included was assessed.
BMC Res Notes
January 2025
UQ Centre for Clinical Research, Faculty of Health Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Australia.
Objectives: This data note presents a comprehensive geodatabase of cardiovascular disease (CVD) hospitalizations in Mashhad, Iran, alongside key environmental factors such as air pollutants, built environment indicators, green spaces, and urban density. Using a spatiotemporal dataset of over 52,000 hospitalized CVD patients collected over five years, the study supports approaches like advanced spatiotemporal modeling, artificial intelligence, and machine learning to predict high-risk CVD areas and guide public health interventions.
Data Description: This dataset includes detailed epidemiologic and geospatial information on CVD hospitalizations in Mashhad, Iran, from January 1, 2016, to December 31, 2020.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!