Surface antimicrobial materials are of interest as they can combat the critical threat of microbial contamination without contributing to issues of environmental contamination and the development drug resistance. Most nanostructured surfaces are prepared by post fabrication modifications and actively release antimicrobial agents. These properties limit the potential applications of nanostructured materials on flexible surfaces. Here, we report on an easily synthesized plastic material with inherent antimicrobial activity, demonstrating excellent microbicidal properties against common bacteria and fungus. The plastic material did not release antimicrobial components as they were anchored to the polymer chains via strong covalent bonds. Time-kill kinetics studies have shown that bactericidal effects take place when bacteria come into contact with a material for a prolonged period, resulting in the deformation and rupture of bacteria cells. A scanning probe microscopy analysis revealed soft nanostructures on the submicron scale, for which the formation is thought to occur via surface phase separation. These soft nanostructures allow for polyionic antimicrobial components to be present on the surface, where they freely interact with and kill microbes. Overall, the new green and sustainable plastic is easily synthesized and demonstrates inherent and long-lasting activity without toxic chemical leaching.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621035 | PMC |
http://dx.doi.org/10.3390/ijms222212315 | DOI Listing |
Expert Opin Drug Deliv
January 2025
Smart Materials, Istituto Italiano di Tecnologia, Genova, Italy.
Introduction: Chronic non-healing wounds have emerged as a significant global healthcare challenge. Biofilm induced wound infections has been widely acknowledged. Despite the advanced understanding of biofilm formation, the existing approaches for diagnosing biofilms in wounds remain considerably suboptimal.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
Dental caries, driven by dysbiosis in oral flora and acid accumulation, pose a significant threat to oral health. Traditional methods of managing dental biofilms using broad-spectrum antimicrobials and fluoride face limitations such as microbial resistance. Natural products, with their antimicrobial properties, present a promising solution for managing dental caries, yet their clinical application faces significant challenges, including low bioavailability, variable efficacy, and patient resistance due to sensory properties.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone, Ireland.
This study provides a comprehensive investigation of antimicrobial additives (ZnO/AgNPs and SiO/AgNPs) on the properties of biodegradable ternary blends composed of poly(hydroxybutyrate) (PHB), poly(lactic acid) (PLA), and polycaprolactone (PCL) by examining the morphology, thermal stability, crystallinity index, and cell viability of these blends. Overall, transmission electron microscopy (TEM) analysis revealed that AgNPs and SiO exhibited comparable sizes, whereas ZnO was significantly larger, which influences their release profiles and interactions with the blends. The addition of antimicrobials influences the rheology of the blends, acting as compatibilizers by reducing the intermolecular forces between biopolymers.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea. Electronic address:
Silver nitroprusside complex nanoparticles (AgN NPs) have garnered significant attention for their antimicrobial properties. However, challenges such as toxicity and limited biocompatibility often hinder their practical applications. Therefore, this study introduces a combined approach to fabricating AgN NPs with chitosan (CS), resulting in CS-AgN nanocomposites (CS-AgN NCs) with cytocompatibility.
View Article and Find Full Text PDFHorm Metab Res
January 2025
Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom of Great Britain and Northern Ireland.
Neutrophil extracellular traps (NETs) are large structures composed of chromatin, histones and granule-derived proteins released extracellularly by neutrophils. They are generally considered to be a part of the antimicrobial defense strategy, preventing the dissemination of pathogens. However, overproduction of NETs or their ineffective clearance can drive various pathologies, many of which are associated with advanced age and involve uncontrolled inflammation, oxidative, cardiovascular and neurodegenerative stress as underlying mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!