This study concerns bio-based urethane prepolymers. The relationship between the chemical structure and the thermal and processing parameters of bio-based isocyanate-terminated ether and ester-urethane prepolymers was investigated. Bio-based prepolymers were obtained with the use of bio-monomers such as bio-based diisocyanate, bio-based polyether polyol or polyester polyols. In addition to their composition, the bio-based prepolymers were different in the content of iso-cyanate groups content (ca. 6 and 8%). The process of pre-polymerization and the obtained bio-based prepolymers were analyzed by determining the content of unreacted NCO groups, Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, thermogravimetry, and rheological measurements. The research conducted facilitated the evaluation of the properties and processability of urethane prepolymers based on natural components. The results indicate that a significant impact on the processability has the origin the polyol ingredient as well as the NCO content. The thermal stability of all of the prepolymers is similar. A prepolymer based on a poly-ether polyol is characterized by a lower viscosity at a lower temperature than the prepolymer based on a polyester polyol. The viscosity value depends on the NCO content.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625470 | PMC |
http://dx.doi.org/10.3390/ijms222212207 | DOI Listing |
Int J Biol Macromol
January 2025
State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Faculty of Light Industry, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
The development of green and cost-effective biomass adsorbents is necessary for removing large amounts of dyes from wastewater. In this study, polyurethane prepolymers were synthesized using polycaprolactone diol (OH-PCL-OH), isophorone diisocyanate, and 2,2-dihydroxymethylpropionic acid, which were subsequently dispersed in aqueous carboxymethyl chitosan (CMCS) solution to produce waterborne polyurethane (WPU)-CMCS porous materials. The adsorbent was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectrometer (FT-IR), thermogravimetric (TGA) and mercury intrusion porosimetry (MIP).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China. Electronic address:
Comparing to the solvent-based and waterborne polyurethanes (PU), the solvent-free reactive PU (RPU) is prepared via in-situ polymerization and film-formation of isocyanate-capped prepolymers and macromolecular polyols in solvent-free system. Thus, the carbon emissions and environmental pollutions are significantly reduced. However, the rapid polymerization also challenges the well control of structure and properties, especially the ordered microstructures.
View Article and Find Full Text PDFMolecules
July 2024
Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 Gabriel Narutowicza Street, 80-233 Gdansk, Poland.
Aging of polymers is a natural process that occurs during their usage and storage. Predicting the lifetime of polymers is a crucial aspect that should be considered at the design stage. In this paper, a series of bio-based thermoplastic poly(ether-urethane) elastomers (bio-TPUs) with modified hard segments were synthesized and investigated to understand the structural and property changes triggered by accelerated aging.
View Article and Find Full Text PDFInt J Mol Sci
July 2024
Department of Applied Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.
This work focused on the preparation and investigation of polyurethane (SO-PU)-containing sunflower oil glycerides. By transesterification of sunflower oil with glycerol, we synthesized a glyceride mixture with an equilibrium composition, which was used as a new diol component in polyurethanes in addition to poly(ε-caprolactone)diol (PCLD2000). The structure of the glyceride mixture was characterized by physicochemical methods, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), nuclear magnetic resonance spectroscopy (NMR), and size exclusion chromatography (SEC) measurements.
View Article and Find Full Text PDFPolymers (Basel)
February 2024
Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!