A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Vascular Polyurethane Prostheses Modified with a Bioactive Coating-Physicochemical, Mechanical and Biological Properties. | LitMetric

Vascular Polyurethane Prostheses Modified with a Bioactive Coating-Physicochemical, Mechanical and Biological Properties.

Int J Mol Sci

Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland.

Published: November 2021

This study describes a method for the modification of polyurethane small-diameter (5 mm) vascular prostheses obtained with the phase inversion method. The modification process involves two steps: the introduction of a linker (acrylic acid) and a peptide (REDV and YIGSR). FTIR and XPS analysis confirmed the process of chemical modification. The obtained prostheses had a porosity of approx. 60%, Young's Modulus in the range of 9-11 MPa, and a water contact angle around 40°. Endothelial (EC) and smooth muscle (SMC) cell co-culture showed that the surfaces modified with peptides increase the adhesion of ECs. At the same time, SMCs adhesion was low both on unmodified and peptide-modified surfaces. Analysis of blood-materials interaction showed high hemocompatibility of obtained materials. The whole blood clotting time assay showed differences in the amount of free hemoglobin present in blood contacted with different materials. It can be concluded that the peptide coating increased the hemocompatibility of the surface by increasing ECs adhesion and, at the same time, decreasing platelet adhesion. When comparing both types of peptide coatings, more promising results were obtained for the surfaces coated with the YISGR than REDV-coated prostheses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8623365PMC
http://dx.doi.org/10.3390/ijms222212183DOI Listing

Publication Analysis

Top Keywords

method modification
8
vascular polyurethane
4
prostheses
4
polyurethane prostheses
4
prostheses modified
4
modified bioactive
4
bioactive coating-physicochemical
4
coating-physicochemical mechanical
4
mechanical biological
4
biological properties
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!