Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) differ for triggers, mode of start, associated symptoms, evolution, and biochemical traits. Therefore, serious attempts are underway to partition them into subgroups useful for a personalized medicine approach to the disease. Here, we investigated clinical and biochemical traits in 40 ME/CFS patients and 40 sex- and age-matched healthy controls. Particularly, we analyzed serum levels of some cytokines, Fatty Acid Binding Protein 2 (FAPB-2), tryptophan, and some of its metabolites via serotonin and kynurenine. ME/CFS patients were heterogeneous for genetic background, trigger, start mode, symptoms, and evolution. ME/CFS patients had higher levels of IL-17A ( = 0.018), FABP-2 ( = 0.002), and 3-hydroxykynurenine ( = 0.037) and lower levels of kynurenine ( = 0.012) and serotonin ( = 0.045) than controls. Changes in kynurenine and 3-hydroxykynurenine were associated with increased kynurenic acid/kynurenine and 3-hydroxykynurenine/kynurenine ratios, indirect measures of kynurenine aminotransferases and kynurenine 3-monooxygenase enzymatic activities, respectively. No correlation was found among cytokines, FABP-2, and tryptophan metabolites, suggesting that inflammation, anomalies of the intestinal barrier, and changes of tryptophan metabolism may be independently associated with the pathogenesis of the disease. Interestingly, patients with the start of the disease after infection showed lower levels of kynurenine ( = 0.034) than those not starting after an infection. Changes in tryptophan metabolites and increased IL-17A levels in ME/CFS could both be compatible with anomalies in the sphere of energy metabolism. Overall, clinical traits together with serum biomarkers related to inflammation, intestine function, and tryptophan metabolism deserve to be further considered for the development of personalized medicine strategies for ME/CFS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8615774PMC
http://dx.doi.org/10.3390/biomedicines9111724DOI Listing

Publication Analysis

Top Keywords

tryptophan metabolites
16
me/cfs patients
12
cytokines fatty
8
fatty acid
8
acid binding
8
binding protein
8
myalgic encephalomyelitis/chronic
8
encephalomyelitis/chronic fatigue
8
fatigue syndrome
8
symptoms evolution
8

Similar Publications

Background: Qi Li Qiang Xin (QLQX) capsule has a solid theoretical basis and clinical efficacy in the treatment of chronic heart failure; however, the underlying mechanisms remain obscure. This study was designed to determine the effect of the QLQX on the treatment of heart failure and delineate the underlying mechanisms via a nontargeted metabolomics and lipidomics approach.

Methods: A rat model of heart failure after myocardial infarction (MI) was established via permanent ligation of the anterior descending branch of the left coronary artery.

View Article and Find Full Text PDF

The microbiota-gut-brain axis is a pivotal medium of crosstalk between the central nervous system (CNS) and the gastrointestinal tract. It is an intricate network of synergistic molecular pathways that exert their effects far beyond their local vicinity and even affect the systemic functioning of the body. The current review explores the involvement of the gut-brain axis (GBA) in the functioning of the nervous system, with a special emphasis on the neurodegeneration, cognitive decline, and neuroinflammation that occur in Alzheimer's disease (AD) and Parkinson's disease (PD).

View Article and Find Full Text PDF

Microbiota-related metabolites correlated with the severity of COVID-19 patients.

Hepatobiliary Pancreat Dis Int

December 2024

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Jinan Microecological Biomedicine Shandong Laboratory, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China; Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310000, China. Electronic address:

Background: Coronavirus disease 2019 (COVID-19) is a global pandemic with high mortality, and the treatment options for the severe patients remain limited. Previous studies reported the altered gut microbiota in severe COVID-19. But there are no comprehensive data on the role of microbial metabolites in COVID-19 patients.

View Article and Find Full Text PDF

IUPHAR Review: Targeted Therapies of Signaling Pathways Based on the Gut Microbiome in Autism Spectrum Disorders: Mechanistic and Therapeutic Applications.

Pharmacol Res

December 2024

Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China. Electronic address:

Autism spectrum disorders (ASD) are complex neurodevelopmental disorders characterized by impairments in social interaction, communication and repetitive activities. Gut microbiota significantly influences behavior and neurodevelopment by regulating the gut-brain axis. This review explores gut microbiota-influenced treatments for ASD, focusing on their therapeutic applications and mechanistic insights.

View Article and Find Full Text PDF

Kawasaki disease (KD) has emerged as the leading cause of acquired heart disease in children, primarily due to the absence of highly sensitive and specific biomarkers for early and accurate diagnosis. To address this issue, a simple and comprehensive targeted metabolomics method employing ultra high-performance liquid chromatography coupled with Q-TRAP mass spectrometry has been developed to identify new metabolite biomarkers for KD. This method enables the simultaneous quantification of 276 metabolites, covering 60 metabolic pathways, with a particular emphasis on metabolites relevant to KD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!