Mitochondria in aerobic eukaryotic cells are both the site of energy production and the formation of harmful species, such as radicals and other reactive oxygen species, known as ROS. They contain an efficient antioxidant system, including low-molecular-mass molecules and enzymes that specialize in removing various types of ROS or repairing the oxidative damage of biological molecules. Under normal conditions, ROS production is low, and mitochondria, which are their primary target, are slightly damaged in a similar way to other cellular compartments, since the ROS released by the mitochondria into the cytosol are negligible. As the mitochondrial generation of ROS increases, they can deactivate components of the respiratory chain and enzymes of the Krebs cycle, and mitochondria release a high amount of ROS that damage cellular structures. More recently, the feature of the mitochondrial antioxidant system, which does not specifically deal with intramitochondrial ROS, was discovered. Indeed, the mitochondrial antioxidant system detoxifies exogenous ROS species at the expense of reducing the equivalents generated in mitochondria. Thus, mitochondria are also a sink of ROS. These observations highlight the importance of the mitochondrial antioxidant system, which should be considered in our understanding of ROS-regulated processes. These processes include cell signaling and the progression of metabolic and neurodegenerative disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8614740 | PMC |
http://dx.doi.org/10.3390/antiox10111824 | DOI Listing |
J Biomater Sci Polym Ed
January 2025
Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India.
Zein, a plant-based protein obtained from the endosperm of corn ( L.) received colossal attention in recent years due to its promising features like being economical, mucoadhesive, gastro-resistant, biocompatible and aids to load hydrophilic and hydrophobic therapeutic agents. It can be employed for the fabrication of various drug delivery systems such as nanoparticles, micelles, hydrogels, nanofibers and films.
View Article and Find Full Text PDFMol Omics
January 2025
Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
Lung cancer remains the leading cause of cancer-related deaths worldwide due to its poor prognosis. Despite significant advancements in the understanding of cancer development, improvements in diagnostic methods, and multimodal therapeutic regimens, the prognosis of lung cancer has still not improved. Therefore, it is reasonable to look for newer and alternative medicines for treatment.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
Diabetes is a complex condition with a rising global incidence, and its impact is equally evident in pediatric practice. Regardless of whether we are dealing with type 1 or type 2 diabetes, the development of complications following the onset of the disease is inevitable. Consequently, contemporary medicine must concentrate on understanding the pathophysiological mechanisms driving systemic decline and on finding ways to address them.
View Article and Find Full Text PDFStress
December 2025
Laboratory of Functional and Structural Biology, Biological Sciences Institute, Federal University of Pará, Belém, Brazil.
Stress occurs as a reaction to mental and emotional pressure, anxiety, or scarring. Chronic stress is defined as constant submission to these moments. It can affect several body systems, increase blood pressure, and weaken immunity, thereby interfering with physiological health processes.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
Gossypol removal is crucial for the resourceful utilization of cottonseed meals in the food and feed industries. Herein, we investigated the comprehensive detoxification mechanism of a gossypol-tolerant strain of (WK331) newly isolated from the rumen. Biodegradation assays showed that WK331 removes over 80% of free gossypol, of which 50% was biodegraded and 30% was converted into bound gossypol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!