A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Intraoperative Resting-State Functional Connectivity Based on RGB Imaging. | LitMetric

Intraoperative Resting-State Functional Connectivity Based on RGB Imaging.

Diagnostics (Basel)

INSA-Lyon, Univ Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F69100 Lyon, France.

Published: November 2021

RGB optical imaging is a marker-free, contactless, and non-invasive technique that is able to monitor hemodynamic brain response following neuronal activation using task-based and resting-state procedures. Magnetic resonance imaging (fMRI) and functional near infra-red spectroscopy (fNIRS) resting-state procedures cannot be used intraoperatively but RGB imaging provides an ideal solution to identify resting-state networks during a neurosurgical operation. We applied resting-state methodologies to intraoperative RGB imaging and evaluated their ability to identify resting-state networks. We adapted two resting-state methodologies from fMRI for the identification of resting-state networks using intraoperative RGB imaging. Measurements were performed in 3 patients who underwent resection of lesions adjacent to motor sites. The resting-state networks were compared to the identifications provided by RGB task-based imaging and electrical brain stimulation. Intraoperative RGB resting-state networks corresponded to RGB task-based imaging (DICE:0.55±0.29). Resting state procedures showed a strong correspondence between them (DICE:0.66±0.11) and with electrical brain stimulation. RGB imaging is a relevant technique for intraoperative resting-state networks identification. Intraoperative resting-state imaging has several advantages compared to functional task-based analyses: data acquisition is shorter, less complex, and less demanding for the patients, especially for those unable to perform the tasks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625493PMC
http://dx.doi.org/10.3390/diagnostics11112067DOI Listing

Publication Analysis

Top Keywords

resting-state networks
24
rgb imaging
20
intraoperative resting-state
12
intraoperative rgb
12
resting-state
11
imaging
10
rgb
9
resting-state procedures
8
identify resting-state
8
resting-state methodologies
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!