The purpose of the present study was to explore the efficacy of fermented extract of sea tangle ( Aresch, FST) with on DNA damage and apoptosis in hydrogen peroxide (HO)-stimulated osteoblastic MC3T3-E1 cells and clarify related signaling pathways. Our results showed that exposure to FST significantly improved cell viability, inhibited apoptosis, and suppressed the generation of reactive oxygen species (ROS) in HO-stimulated cells. In addition, HO triggered DNA damage in MC3T3-E1 cells was markedly attenuated by FST pretreatment. Moreover, HO-induced mitochondrial dysfunctions associated with apoptotic events, including loss of mitochondrial membrane potential (MMP), decreased Bcl-2/Bcl-2 associated x-protein (Bax) ratio, and cytosolic release of cytochrome , were reduced in the presence of FST. FST also diminished HO-induced activation of caspase-3, which was associated with the ability of FST to protect the degradation of poly (ADP-ribose) polymerase. Furthermore, FST notably enhanced nuclear translocation and phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2) in the presence of HO with concomitant upregulation of heme oxygenase-1 (HO-1) expression. However, artificial blockade of this pathway by the HO-1 inhibitor, zinc protoporphyrin IX, greatly abolished the protective effect of FST against HO-induced MC3T3-E1 cell injury. Taken together, these results demonstrate that FST could protect MC3T3-E1 cells from HO-induced damage by maintaining mitochondrial function while eliminating ROS along with activation of the Nrf2/HO-1 antioxidant pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8623046PMC
http://dx.doi.org/10.3390/foods10112807DOI Listing

Publication Analysis

Top Keywords

mc3t3-e1 cells
16
fst
9
sea tangle
8
tangle aresch
8
osteoblastic mc3t3-e1
8
dna damage
8
fst protect
8
mc3t3-e1
5
cells
5
protection oxidative
4

Similar Publications

Mongolian medicine Sugemule-7 decoction prevents osteoporosis via Erk1/2 and p38 MAPK signaling pathways according to network pharmacology analysis.

Int J Biol Macromol

December 2024

Department of Veterinary Medicine, College of Animal Science and Technology, Hebei North University, Zhangjiakou, Hebei 075131, China. Electronic address:

Osteoporosis (OP) is a significant global public health concern that requires the development of safe and effective drugs for prevention and treatment. Sugemule-7 (SGML-7) decoction, a traditional Mongolian herbal prescription, has long been used for treating OP, but its components and mechanisms of action remain unclear. The study identified the main compounds of SGML-7 using UHPLC-Q Exactive MS and explored the multi-target mechanisms of SGML-7 in OP through network pharmacology and molecular docking.

View Article and Find Full Text PDF

DOCK5 (dedicator of cytokinesis 5), a guanine nucleotide exchange factor for Rac1, has been implicated in BMP2-mediated osteoblast differentiation, but its specific role in osteogenesis and bone regeneration remained unclear. This study investigated the effect of DOCK5 on bone regeneration using C21, a DOCK5 chemical inhibitor, and Dock5-deficient mice. Osteoblast differentiation and bone regeneration were analyzed using bone marrow mesenchymal stem cells (BMSCs) and various animal models.

View Article and Find Full Text PDF

The advancement in the arena of bone tissue engineering persuades us to develop novel nanocomposite scaffolds in order to improve antibacterial, osteogenic, and angiogenic properties that show resemblance to natural bone extracellular matrix. Here, we focused on the development of novel zinc-doped hydroxyapatite (ZnHAP) nanoparticles (1, 2 and 3 wt%; size: 50-60 nm) incorporated chitosan-gelatin nanocomposite scaffold, with an interconnected porous structure. The addition of ZnHAP nanoparticles decreases the pore size (~30 µm) of the chitosan gelatin scaffold.

View Article and Find Full Text PDF

METTL14 Mediates m6A methylation to improve osteogenesis under oxidative stress condition.

Redox Rep

December 2025

Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China.

Objectives: Bone remodeling imbalance contributes to osteoporosis. Though current medications enhance osteoblast involvement in bone formation, the underlying pathways remain unclear. This study was aimed to explore the pathways involved in bone formation by osteoblasts, we investigate the protective role of glycolysis and N6-methyladenosine methylation (m6A) against oxidative stress-induced impairment of osteogenesis in MC3T3-E1 cells.

View Article and Find Full Text PDF

Study on the antioxidant and antiosteoporotic activities of the oyster peptides prepared by ultrasound-assisted enzymatic hydrolysis.

Ultrason Sonochem

December 2024

Shenzhen Key Laboratory of Food Nutrition and Health, Guangdong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, School of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China. Electronic address:

In this study, the effects of ultrasound-assisted enzymatic hydrolysis on the production of antioxidant and antiosteoporotic peptides derived from oysters were investigated. Results showed that ultrasound-assisted enzymatic hydrolysis significantly enhanced the peptide content, free radical scavenging ability, and ferric reducing antioxidant power of total oyster protein hydrolysate (TOPH), with optimal results achieved at 200 W (TOPH-200). Correspondingly, ultrasound treatment at 200 W increased the exposure of hydrophobic regions, reduced α-helix content, and facilitated the generation of small molecular weight peptides in TOPH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!