Sediment is a key issue in the beverage industry. This study confirmed that reversible and irreversible sediments were formed during low-temperature storage of ginseng extract. The first 30 days of storage are the critical period for sediment formation. As the time of storage extends, the chemical composition changes. The composition interaction model verified that the cross-linking of protein-pectin, protein-oxalic acid and Ca-pectin was the main cause of the turbidity of ginseng extract. Based on the characterization of irreversible sediment (IRS), there are typical structures of proteins, polysaccharides and calcium oxalate dihydrate (COD) crystals. Glucose, galacturonic acid, aspartate, glutamic acid, leucine, Ca, K, Al, Mg, Na and Fe are the main monomer components. Effective regulation of these ingredients will greatly help the quality of ginseng beverages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621104PMC
http://dx.doi.org/10.3390/foods10112714DOI Listing

Publication Analysis

Top Keywords

ginseng extract
12
characterization irreversible
8
irreversible sediment
8
formation characterization
4
sediment
4
ginseng
4
sediment ginseng
4
extract sediment
4
sediment key
4
key issue
4

Similar Publications

A and Extract Blend Attenuates Muscle Atrophy by Regulating Protein Metabolism and Antioxidant Activity.

J Med Food

December 2024

Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Republic of Korea.

Here, we investigated whether a mixture of and (1:3, KGC01CE) could suppress muscle atrophy in HO-induced C2C12 cells and dexamethasone-injected mice. Our results revealed that KGC01CE effectively safeguarded against HO-induced muscle atrophy in C2C12 cells compared with the same mixture at other ratios. We demonstrated that dexamethasone elicited oxidative stress in muscle tissue and decreased the grip strength and cross-sectional areas of muscle fibers; however, oral administration of KGC01CE (1:3) suppressed these dexamethasone-induced changes.

View Article and Find Full Text PDF

Molecular mechanisms behind the inhibitory effects of ginsenoside Rg3 on hepatic fibrosis: a review.

Arch Toxicol

December 2024

College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.

Hepatitis is a chronic inflammatory liver disease and an important cause of liver fibrosis, which can progress to cirrhosis and even hepatocellular carcinoma if left untreated. However, liver fibrosis is a reversible disease, so finding new intervention targets and molecular markers is the key to preventing and treating liver fibrosis. Ginseng, the roots of Panax ginseng C.

View Article and Find Full Text PDF

Extraction of American ginseng polysaccharide by ultrasound-assisted deep eutectic solvents-based three-phase partitioning: Process optimization, structural characterization, and anti-ulcerative colitis study.

Ultrason Sonochem

December 2024

The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China. Electronic address:

Three-phase partitioning (TPP) is promising for isolating bioactive polysaccharides, but t-butanol's environmental impact limits its application. Deep eutectic solvents can serve as a green and recyclable alternative to t-butanol. This study introduces an ultrasonic-assisted DES three-phase partitioning (UA-TPP-DES) system to extract and purify American ginseng polysaccharides (AGPs).

View Article and Find Full Text PDF

Introduction: (referred to Tianma in Chinese), the dried tuber of Bl. (Orchidaceae), is utilized as a medicine-food homology product. Sulfur fumigation is commonly employed in the processing of (GR).

View Article and Find Full Text PDF
Article Synopsis
  • Ginseng contains rare compounds called ginsenosides, specifically 25-OH-PPT (T19), known for beneficial effects like lowering blood sugar and reducing inflammation.
  • The research focused on optimizing the process to extract T19 from ginseng stems and leaves, utilizing different acids and hydrolysis conditions to maximize yield safely.
  • Results showed that hydrochloric acid increased T19 content significantly, while citric acid was safer; additionally, T19 demonstrated protective effects on heart cells by reducing oxidative stress and impacting fibrosis markers.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!