Midbrain raphe nuclei (MRNs) contain a large number of serotonergic neurons associated with the regulation of numerous types of psychoemotional states and physiological processes. The aim of this work was to study alterations of the MRN transcriptome in mice with prolonged positive or negative fighting experience and to identify key gene networks associated with the regulation of serotonergic system functioning. Numerous genes underwent alterations of transcription in the MRNs of male mice that either manifested aggression or experienced social defeat in daily agonistic interactions. The expression of the gene encoding the rate-limiting enzyme of the serotonin synthesis pathway correlated with the expression of many genes, 31 of which were common between aggressive and defeated mice and were downregulated in the MRNs of mice of both experimental groups. Among these common differentially expressed genes (DEGs), there were genes associated with behavior, learning, memory, and synaptic signaling. These results suggested that, in the MRNs of the mice, the transcriptome changes associated with serotonergic regulation of various processes are similar between the two groups (aggressive and defeated). In the MRNs, more DEGs correlating with expression were found in defeated mice than in the winners, which is probably a consequence of deeper downregulation in the losers. It was shown for the first time that, in both groups of experimental mice, the changes in the transcription of genes controlling the synthesis and transport of serotonin directly correlate with the expression of genes and , which control the synthesis of corticotrophin- and thyrotropin-releasing hormones. Our findings indicate that CRH and TRH locally produced in MRNs are related to serotonergic regulation of brain processes during a chronic social conflict.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8618546 | PMC |
http://dx.doi.org/10.3390/genes12111811 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!