Behavioral isolation is considered to be the primary mode of species isolation, and the lack of identification of individual genes for behavioral isolation has hindered our ability to address fundamental questions about the process of speciation. One of the major questions that remains about behavioral isolation is whether the genetic basis of isolation between species also varies within a species. Indeed, the extent to which genes for isolation may vary across a population is rarely explored. Here, we bypass the problem of individual gene identification by addressing this question using a quantitative genetic comparison. Using strains from eight different populations of , we genetically mapped the genomic regions contributing to behavioral isolation from their closely related sibling species, . We found extensive variation in the size of contribution of different genomic regions to behavioral isolation among the different strains, in the location of regions contributing to isolation, and in the ability to redetect loci when retesting the same strain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8619000PMC
http://dx.doi.org/10.3390/genes12111703DOI Listing

Publication Analysis

Top Keywords

behavioral isolation
24
isolation
10
genomic regions
8
regions contributing
8
behavioral
6
intraspecific genetic
4
genetic variation
4
variation behavioral
4
isolation loci
4
loci behavioral
4

Similar Publications

Perinatal dysfunction of innate immunity in cystic fibrosis.

Sci Transl Med

January 2025

First Department of Medicine, Cardiology, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany.

In patients with cystic fibrosis (CF), repeated cycles of infection and inflammation eventually lead to fatal lung damage. Although diminished mucus clearance can be restored by highly effective CFTR modulator therapy, inflammation and infection often persist. To elucidate the role of the innate immune system in CF etiology, we investigated a CF pig model and compared these results with those for preschool children with CF.

View Article and Find Full Text PDF

Seasonal and periodic patterns in US COVID-19 mortality using the Variable Bandpass Periodic Block Bootstrap.

PLoS One

January 2025

Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, State University of New York, Rensselaer, New York, United States of America.

Since the emergence of the SARS-CoV-2 virus, research into the existence, extent, and pattern of seasonality has been of the highest importance for public health preparation. This study uses a novel bandpass bootstrap approach called the Variable Bandpass Periodic Block Bootstrap to investigate the periodically correlated components including seasonality within US COVID-19 mortality. Bootstrapping to produce confidence intervals for periodic characteristics such as the seasonal mean requires preservation of the periodically correlated component's correlation structure during resampling.

View Article and Find Full Text PDF

Acute respiratory infections cause significant paediatric morbidity, but for pathogens other than influenza, respiratory syncytial virus (RSV), and SARS-CoV-2, systematic monitoring is not commonly performed. This retrospective analysis of six years of routinely collected respiratory pathogen multiplex PCR testing at a major paediatric hospital in New South Wales Australia, describes the epidemiology, year-round seasonality, and co-detection patterns of 15 viral respiratory pathogens. 32,599 respiratory samples from children aged under 16 years were analysed.

View Article and Find Full Text PDF

Exploring Singlet Carbyne Anions and Related Low-Valent Carbon Species Utilizing a Cyclic Phosphino Substituent.

Acc Chem Res

January 2025

Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.

ConspectusThe advancement of synthetic methodologies is fundamentally driven by a deeper understanding of the structure-reactivity relationships of reactive key intermediates. Carbyne anions are compounds featuring a monovalent anionic carbon possessing four nonbonding valence electrons, which were historically confined to theoretical constructs or observed solely within the environment of gas-phase studies. These species possess potential for applications across diverse domains of synthetic chemistry and ancillary fields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!