Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Beyond its role on the conversion of nutrients into energy and biomass, cellular metabolism is actively involved in the control of many physiological processes. Among these, it is becoming increasingly evident that specific metabolic pathways are associated with the phenotype of several immune cell types and, importantly, are crucial in controlling their differentiation, proliferation, and effector functions, thus shaping the immune response against pathogens and tumors. In this context, data generated over the last decade have uncovered mammalian sirtuins as important regulators of cellular metabolism, immune cell function, and cancer. Here, we summarize our current knowledge on the roles of this family of protein deacylases on the metabolic control of immune cells and their implications on immune-related diseases and cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8618532 | PMC |
http://dx.doi.org/10.3390/genes12111698 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!