A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MicroRNAs May Play an Important Role in Sexual Reversal Process of Chinese Soft-Shelled Turtle, . | LitMetric

The Chinese soft-shelled () turtle exhibits obvious sex dimorphism, which leads to the higher economic and nutritional value of male individuals. Exogenous hormones can cause the transformation from male to female phenotype during gonadal differentiation. However, the molecular mechanism related to the sexual reversal process is unclear. In this study, we compared the difference between the small RNAs of male, female, and pseudo-female turtles by small RNA-seq to understand the sexual reversal process of Chinese soft-shelled turtles. A certain dose of estrogen can cause the transformation of Chinese soft-shelled turtles from male to female, which are called pseudo-female individuals. The result of small RNA-seq has revealed that the characteristics of pseudo-females are very similar to females, but are strikingly different from males. The number of the microRNAs (miRNAs) of male individuals was significantly less than the number of female individuals or pseudo-female individuals, while the expression level of miRNAs of male individuals were significantly higher than the other two types. Furthermore, we found 533 differentially expressed miRNAs, including 173 up-regulated miRNAs and 360 down-regulated miRNAs, in the process of transformation from male to female phenotype. Cluster analysis of the total 602 differential miRNAs among females, males, and pseudo-females showed that miRNAs played a crucial role during the sexual differentiation. Among these differential miRNAs, we found 12 miRNAs related to gonadal development and verified their expression by qPCR. The TR-qPCR results confirmed the differential expression of 6 of the 12 miRNAs: miR-26a-5p, miR-212-5p, miR-202-5p, miR-301a, miR-181b-3p and miR-96-5p were involved in sexual reversal process, which was consistent with the results of omics. Using these six miRNAs and some of their target genes, we constructed a network diagram related to gonadal development. We suggest that these miRNAs may play an important role in the process of effective sex reversal, which would contribute to the breeding of all male strains of Chinese soft-shelled turtles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620467PMC
http://dx.doi.org/10.3390/genes12111696DOI Listing

Publication Analysis

Top Keywords

chinese soft-shelled
20
sexual reversal
16
reversal process
16
male female
16
male individuals
12
soft-shelled turtles
12
mirnas
12
play role
8
role sexual
8
process chinese
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!