Einstein-Podolsky-Rosen Steering for Mixed Entangled Coherent States.

Entropy (Basel)

Department of Applied Physics and Astronomy, University of Sharjah, Sharjah 27272, United Arab Emirates.

Published: October 2021

By using the Born Markovian master equation, we study the relationship among the Einstein-Podolsky-Rosen (EPR) steering, Bell nonlocality, and quantum entanglement of entangled coherent states (ECSs) under decoherence. We illustrate the dynamical behavior of the three types of correlations for various optical field strength regimes. In general, we find that correlation measurements begin at their maximum and decline over time. We find that quantum steering and nonlocality behave similarly in terms of photon number during dynamics. Furthermore, we discover that ECSs with steerability can violate the Bell inequality, and that not every ECS with Bell nonlocality is steerable. In the current work, without the memory stored in the environment, some of the initial states with maximal values of quantum steering, Bell nonlocality, and entanglement can provide a delayed loss of that value during temporal evolution, which is of interest to the current study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8619424PMC
http://dx.doi.org/10.3390/e23111442DOI Listing

Publication Analysis

Top Keywords

bell nonlocality
12
entangled coherent
8
coherent states
8
steering bell
8
quantum steering
8
einstein-podolsky-rosen steering
4
steering mixed
4
mixed entangled
4
states born
4
born markovian
4

Similar Publications

W-Class States-Identification and Quantification of Bell-CHSH Inequalities' Violation.

Entropy (Basel)

December 2024

Joint Laboratory of Optics of Palacký University and Institute of Physics of AS CR, Faculty of Science, Palacký University, 17. listopadu 12, 779 00 Olomouc, Czech Republic.

We discuss a family of W-class states describing three-qubit systems. For such systems, we analyze the relations between the entanglement measures and the nonlocality parameter for a two-mode mixed state related to the two-qubit subsystem. We find the conditions determining the boundary values of the negativity, parameterized by concurrence, for violating the Bell-CHSH inequality.

View Article and Find Full Text PDF

This paper is devoted to an experimental investigation of cognitive contextuality inspired by quantum contextuality research. This contextuality is related to, but not identical to context-sensitivity which is well-studied in cognitive psychology and decision making. This paper is a part of quantum-like modeling, i.

View Article and Find Full Text PDF

How can detector click probabilities respond to spatial rotations around a fixed axis, in any possible physical theory? Here, we give a thorough mathematical analysis of this question in terms of "rotation boxes", which are analogous to the well-known notion of non-local boxes. We prove that quantum theory admits the most general rotational correlations for spins 0, 1/2, and 1, but we describe a metrological game where beyond-quantum resources of spin 3/2 outperform all quantum resources of the same spin. We prove a multitude of fundamental results about these correlations, including an exact convex characterization of the spin-1 correlations, a Tsirelson-type inequality for spins 3/2 and higher, and a proof that the general spin- correlations provide an efficient outer SDP approximation to the quantum set.

View Article and Find Full Text PDF

The prevailing consensus is that the sequential sharing of nonlocality in a Bell experiment requires generalized unsharp measurements, given that a sharp measurement inevitably destroys the entanglement of the shared state. In contrast, a recent work [A. Steffinlongo and A.

View Article and Find Full Text PDF

Information causality was initially proposed as a physical principle aimed at deriving the predictions of quantum mechanics on the type of correlations observed in the Bell experiment. In the same work, information causality was famously shown to imply the Uffink inequality that approximates the set of quantum correlations and rederives Tsirelson's bound of the Clauser-Horne-Shimony-Holt inequality. This result found limited generalizations due to the difficulty of deducing implications of the information causality principle on the set of nonlocal correlations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!