Local Stability of McKean-Vlasov Equations Arising from Heterogeneous Gibbs Systems Using Limit of Relative Entropies.

Entropy (Basel)

School of Mathematics and Statistics, Carleton University, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada.

Published: October 2021

A family of heterogeneous mean-field systems with jumps is analyzed. These systems are constructed as a Gibbs measure on block graphs. When the total number of particles goes to infinity, the law of large numbers is shown to hold in a multi-class context, resulting in the weak convergence of the empirical vector towards the solution of a McKean-Vlasov system of equations. We then investigate the local stability of the limiting McKean-Vlasov system through the construction of a local Lyapunov function. We first compute the limit of adequately scaled relative entropy functions associated with the explicit stationary distribution of the -particles system. Using a Laplace principle for empirical vectors, we show that the limit takes an explicit form. Then we demonstrate that this limit satisfies a descent property, which, combined with some mild assumptions shows that it is indeed a local Lyapunov function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620427PMC
http://dx.doi.org/10.3390/e23111407DOI Listing

Publication Analysis

Top Keywords

local stability
8
mckean-vlasov system
8
local lyapunov
8
lyapunov function
8
local
4
stability mckean-vlasov
4
mckean-vlasov equations
4
equations arising
4
arising heterogeneous
4
heterogeneous gibbs
4

Similar Publications

Impacts of climate change on storm event-based flow regime and channel stability of urban headwater streams.

J Environ Manage

January 2025

Tetra Tech, Inc., P.O. Box 14409, Research Triangle Park, NC, 27709, United States. Electronic address:

Due to the recent improved availability of global and regional climate change (CC) models and associated data, the projected impact of CC on urban stormwater management is well documented. However, most studies are based on simplified design storm analysis and unit-area runoff models; evaluations of the long-term, continuous hydrologic response of extensive stormwater control measures (SCM) implementation under future CC scenarios are limited. Moreover, channel stability in response to CC is seldom evaluated due to the input data required to develop a long-term, continuous sediment transport model.

View Article and Find Full Text PDF

Genetically encoded tension sensors (GETSs) allow for quantifying forces experienced by intracellular proteins involved in mechanotransduction. The vast majority of GETSs are comprised of a FRET pair flanking an elastic "spring-like" domain that gradually extends in response to force. Because of ensemble averaging, the FRET signal generated by such analog sensors conceals forces that deviate from the average, and hence it is unknown if a subset of proteins experience greater magnitudes of force.

View Article and Find Full Text PDF

During chromosome segregation, the spindle assembly checkpoint (SAC) detects errors in kinetochore-microtubule attachments. Timely activation and maintenance of the SAC until defects are corrected is essential for genome stability. Here, we show that shugoshin (Sgo1), a conserved tension-sensing protein, ensures the maintenance of SAC signals in response to unattached kinetochores during mitosis in a basidiomycete budding yeast Cryptococcus neoformans.

View Article and Find Full Text PDF

Biological memory networks are thought to store information by experience-dependent changes in the synaptic connectivity between assemblies of neurons. Recent models suggest that these assemblies contain both excitatory and inhibitory neurons (E/I assemblies), resulting in co-tuning and precise balance of excitation and inhibition. To understand computational consequences of E/I assemblies under biologically realistic constraints we built a spiking network model based on experimental data from telencephalic area Dp of adult zebrafish, a precisely balanced recurrent network homologous to piriform cortex.

View Article and Find Full Text PDF

DNAzyme-based cascade networks are effective tools to achieve ultrasensitive detection of low-abundance miRNAs. However, their designs are complicated and costly, and the operation is time-consuming. Herein, a novel simple noncascade DNAzyme network is designed and its amplification effect is comparable to or even better than many cascading ones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!