Optimal 3D Angle of Arrival Sensor Placement with Gaussian Priors.

Entropy (Basel)

School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China.

Published: October 2021

Sensor placement is an important factor that may significantly affect the localization performance of a sensor network. This paper investigates the sensor placement optimization problem in three-dimensional (3D) space for angle of arrival (AOA) target localization with Gaussian priors. We first show that under the A-optimality criterion, the optimization problem can be transferred to be a diagonalizing process on the AOA-based Fisher information matrix (FIM). Secondly, we prove that the FIM follows the invariance property of the 3D rotation, and the Gaussian covariance matrix of the FIM can be diagonalized via 3D rotation. Based on this finding, an optimal sensor placement method using 3D rotation was created for when prior information exists as to the target location. Finally, several simulations were carried out to demonstrate the effectiveness of the proposed method. Compared with the existing methods, the mean squared error (MSE) of the maximum a posteriori (MAP) estimation using the proposed method is lower by at least 25% when the number of sensors is between 3 and 6, while the estimation bias remains very close to zero (smaller than 0.15 m).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8623848PMC
http://dx.doi.org/10.3390/e23111379DOI Listing

Publication Analysis

Top Keywords

sensor placement
16
angle arrival
8
gaussian priors
8
optimization problem
8
matrix fim
8
proposed method
8
sensor
5
optimal angle
4
arrival sensor
4
placement
4

Similar Publications

Purpose: Atrial fibrillation (AF) is the most common chronic cardiac arrhythmia that increases the risk of stroke, primarily due to thrombus formation in the left atrial appendage (LAA). Left atrial appendage occlusion (LAAO) devices offer an alternative to oral anticoagulation for stroke prevention. However, the complex and variable anatomy of the LAA presents significant challenges to device design and deployment.

View Article and Find Full Text PDF

A Comprehensive Review of Vision-Based Sensor Systems for Human Gait Analysis.

Sensors (Basel)

January 2025

Centre for Automation and Robotics (CAR UPM-CSIC), Escuela Técnica Superior de Ingeniería y Diseño Industrial (ETSIDI), Universidad Politécnica de Madrid, Ronda de Valencia 3, 28012 Madrid, Spain.

Analysis of the human gait represents a fundamental area of investigation within the broader domains of biomechanics, clinical research, and numerous other interdisciplinary fields. The progression of visual sensor technology and machine learning algorithms has enabled substantial developments in the creation of human gait analysis systems. This paper presents a comprehensive review of the advancements and recent findings in the field of vision-based human gait analysis systems over the past five years, with a special emphasis on the role of vision sensors, machine learning algorithms, and technological innovations.

View Article and Find Full Text PDF

Portable monitoring devices based on Inertial Measurement Units (IMUs) have the potential to serve as quantitative assessments of human movement. This article proposes a new method to identify the optimal placements of the IMUs and quantify the smoothness of the gait. First, it identifies gait events: foot-strike (FS) and foot-off (FO).

View Article and Find Full Text PDF

Pulse oximetry at two sensor placement sites in conscious foals.

Acta Vet Scand

January 2025

Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, 00014, Helsinki, Finland.

Background: Pulse oximetry has not been thoroughly evaluated for assessment of oxygenation in conscious foals. Compared with invasive arterial blood sampling, it is a painless and non-invasive method for real-time monitoring of blood oxygen saturation. The aim of this prospective clinical study was to evaluate the usability, validity, and reliability of pulse oximetry at two measuring sites (lip and caudal abdominal skin fold) for blood oxygen saturation measurement in conscious foals with and without respiratory compromise.

View Article and Find Full Text PDF

Objective: The goal of this study was to evaluate the difference in weight bearing in a toes-in splint versus a toes-out forelimb splint and to determine the difference in sub-bandage pressures between the groups. We hypothesized that (1) weight bearing would not be different between the 2 splints and that (2) sub-bandage pressures would be distributed higher on the distal digits in the toes-out splint and pressures would be more evenly distributed across the paw in the toes-in splint.

Methods: In this controlled crossover trial, a random forelimb of 10 healthy dogs was bandaged with a splint that left the digits exposed and again with a splint that encompassed the digits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!