The perception of acute heart failure (AHF) as a single entity is increasingly outdated, as distinct patient profiles can be discerned. Key heart failure (HF) studies have previously highlighted the difference in both the course and prognosis of de novo AHF and acute decompensated chronic HF (ADHF). Accordingly, distinct AHF profiles with differing underlying pathophysiologies of disease progression can be shown. We compared a range of selected biomarkers in order to better describe the profile of de novo AHF and ADHF, including the inter alia-serum lactate, bilirubin, matrix metallopeptidase 9 (MMP-9), follistatin, intercellular adhesion molecule 1 (ICAM-1), lipocalin and galectin-3. The study comprised 248 AHF patients (de novo = 104), who were followed up for one year. The biomarker data of the de novo AHF and ADHF profiles was then compared in order to link biomarkers to their prognosis. Our study demonstrated that, although there are similarities between each patient profile, key biomarker differences do exist-predominantly in terms of NTproBNP, serum lactate, bilirubin, ICAM-1, follistatin, ferritin and sTfR (soluble transferrin receptor). ADHF tended to have compromised organ function and higher risks of both one-year mortality and composite endpoint (one-year mortality or rehospitalization for heart failure) hazard ratios (HR) (95% CI): 3.4 (1.8-6.3) and 2.8 (1.6-4.6), respectively, both < 0.0001. Among the biomarkers of interest: sTfR HR (95% CI): 1.4 (1.04-1.8), NGAL (neutrophil gelatinase-associated lipocalin) HR (95% CI): 2.0 (1.3-3.1) and GDF-15 (growth/differentiation factor-15) HR (95% CI): 4.0 (1.2-13.0) significantly impacted the one-year survival, all < 0.05.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8615401PMC
http://dx.doi.org/10.3390/biom11111701DOI Listing

Publication Analysis

Top Keywords

heart failure
20
novo ahf
12
profile novo
8
acute heart
8
ahf adhf
8
lactate bilirubin
8
one-year mortality
8
ahf
6
novo
5
heart
5

Similar Publications

Background: Females with hypertrophic cardiomyopathy present at a more advanced stage of the disease and have a higher risk of heart failure and death. The factors behind these differences are unclear. We aimed to investigate sex-related differences in clinical and genetic factors affecting adverse outcomes in the Sarcomeric Human Cardiomyopathy Registry.

View Article and Find Full Text PDF

Rationale: Acute kidney injury (AKI) is a clinical syndrome associated with a multitude of conditions. Although renal replacement therapy (RRT) remains the cornerstone of treatment for advanced AKI, its implementation can potentially pose risks and may not be readily accessible across all healthcare settings and regions. Elevated lactate levels are implicated in sepsis-induced AKI; however, it remains unclear whether increased lactate directly induces AKI or elucidates the underlying mechanisms.

View Article and Find Full Text PDF

Background: Heart failure (HF) has become a public healthcare concern with significant costs to countries because of the aging world population. Acute heart failure (AHF) is a common condition faced frequently in emergency departments, and patients often present to hospitals with complaints of breathlessness. The patient must be evaluated with anamnesis, physical examination, blood, and imaging results to diagnose AHF.

View Article and Find Full Text PDF

Copper is an essential micronutrient involved in various physiological processes in various cell types. Consequently, dysregulation of copper homeostasis-either excessive or deficient-can lead to pathological changes, such as heart failure (HF). Recently, a new type of copper-dependent cell death known as cuproptosis has drawn increasing attention to the impact of copper dyshomeostasis on HF.

View Article and Find Full Text PDF

Extracellular vesicular microRNAs and cardiac hypertrophy.

Front Endocrinol (Lausanne)

January 2025

Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China.

Cardiac hypertrophy is an adaptive response to pressure or volume overload such as hypertension and ischemic heart diseases. Sustained cardiac hypertrophy eventually leads to heart failure. The pathophysiological alterations of hypertrophy are complex, involving both cellular and molecular systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!