Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a highly conserved enzyme involved in the ubiquitous process of glycolysis and presents a loop (residues 208-215 of GAPDH) in two alternative conformations (I and II). It is uncertain what triggers this loop rearrangement, as well as which is the precise site from which phosphate attacks the thioacyl intermediate precursor of 1,3-bisphosphoglycerate (BPG). To clarify these uncertainties, we determined the crystal structures of complexes of wild-type GAPDH (WT) with NAD and phosphate or G3P, and of essentially inactive GAPDH mutants (C150S, H177A), trapping crystal structures for the thioacyl intermediate or for ternary complexes with NAD and either phosphate, BPG, or G3P. Analysis of these structures reported here lead us to propose that phosphate is located in the "new Pi site" attacks the thioester bond of the thioacyl intermediate to generate 1,3-bisphosphoglyceric acid (BPG). In the structure of the thioacyl intermediate, the mobile loop is in conformation II in subunits O, P, and R, while both conformations coexist in subunit Q. Moreover, only the Q subunit hosts bound NADH. In the R subunit, only the pyrophosphate part of NADH is well defined, and NADH is totally absent from the O and P subunits. Thus, the change in loop conformation appears to occur after NADH is produced, before NADH is released. In addition, two new D-glyceraldehyde-3-phosphate (G3P) binding forms are observed in WT.NAD.G3P and C150A+H177A.NAD.G3P. In summary, this paper improves our understanding of the GAPDH catalytic mechanism, particularly regarding BPG formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8615399 | PMC |
http://dx.doi.org/10.3390/biom11111565 | DOI Listing |
An ongoing challenge in polymer chemistry is accessing diverse block copolymers from multiple polymerization mechanisms and monomer classes. One strategy to accomplish this goal without intermediate compatibilization steps is the use of universal mediators. Thiocarbonyl thio (TCT) functional groups are well-known mediators to combine radical with either cationic or anionic polymerization, but a sequential cationic-anionic universal mediator system has never been reported.
View Article and Find Full Text PDFJ Org Chem
September 2024
Departments of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States.
Divergent total syntheses of binding pocket and peripherally modified tetrachlorovancomycins, a non-native synthetic glycopeptide, and their evaluation are disclosed. Central to the approach is the synthesis of a single late-stage intermediate that bears a residue 4 thioamide ([Ψ[C(═S)NH]Tpg]tetrachlorovancomycin (), LLS 15 steps, 14% overall) as a precursor to either of two key pocket modifications and their pairing with any combination of two peripheral modifications conducted without protecting groups. A stereochemical simplification achieved by the addition of two aryl chlorides removes two synthetically challenging atropisomer centers in native glycopeptides and streamlines the synthesis.
View Article and Find Full Text PDFJ Org Chem
April 2024
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.
A facile transition-metal-free synthesis of 3,5-bis(het)aryl/arylaminothiadiazoles has been reported. The overall protocol involves base-mediated tandem thioacylation of amidines with dithioesters or aryl isothiocyanates in DMF solvent and subsequent in situ intramolecular dehydrogenative N-S bond formation of thioacylamidine intermediates under an inert atmosphere. A probable mechanism involving a carbamoyl anion, generated by deprotonation of DMF, acting as a radical initiator has been suggested.
View Article and Find Full Text PDFACS Omega
March 2023
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States.
Progress toward the design and synthesis of ambiphilic aryl thiol-iminium-based small molecules for organocatalyzed thioacyl aminolysis is reported. Here we describe the synthesis of a novel tetrahydroisoquinoline-derived scaffold, bearing both thiol and iminium functionalities, capable of promoting the transthioesterification and subsequent amine capture reactions necessary to achieve organocatalyzed thioacyl aminolysis. Model studies demonstrate the ability of this designed organocatalyst to deliver critical intermediates capable of undergoing these individual reactions necessary for the proposed process.
View Article and Find Full Text PDFMethods Mol Biol
June 2022
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
A novel synthetic approach to thioamide-substituted peptides is reported. It provides a practical tool for the chemical biology study of peptides and proteins by replacing a carbonyl oxygen atom of an amide bond by an sp-hybridized sulfur atom to precisely introduce a thioamide bond Ψ[CS-NH] into a peptide backbone. The α-thioacyloxyenamide intermediates, originating from ynamide coupling reagent and proteinogenic amino monothioacids, are proved to be novel effective thioacylating reagents in both the solution and solid phase peptide syntheses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!