Internalized Nanoceria Modify the Radiation-Sensitivity Profile of MDA MB231 Breast Carcinoma Cells.

Biology (Basel)

Nuclear Medicine and Molecular Imaging Sciences Program, Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA.

Published: November 2021

Owing to its unique redox properties, cerium oxide (nanoceria) nanoparticles have been shown to confer either radiosensitization or radioprotection to human cells. We investigated nanoceria's ability to modify cellular health and reactive oxygen species (ROS) at various absorbed doses (Gray) of ionizing radiation in MDA-MB231 breast carcinoma cells. We used transmission electron microscopy to visualize the uptake and compartmental localization of nanoceria within cells at various treatment concentrations. The effects on apoptosis and other cellular health parameters were assessed using confocal fluorescence imaging and flow cytometry without and with various absorbed doses of ionizing radiation, along with intracellular ROS levels. Our results showed that nanoceria were taken up into cells mainly by macropinocytosis and segregated into concentration-dependent large aggregates in macropinosomes. Confocal imaging and flow cytometry data showed an overall decrease in apoptotic cell populations in proportion to increasing nanoparticle concentrations. This increase in cellular health was observed with a corresponding reduction in ROS at all tested absorbed doses. Moreover, this effect appeared pronounced at lower doses compared to unirradiated or untreated populations. In conclusion, internalized nanoceria confers radioprotection with a corresponding decrease in ROS in MDA-MB231 cells, and this property confers significant perils and opportunities when utilized in the context of radiotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8614948PMC
http://dx.doi.org/10.3390/biology10111148DOI Listing

Publication Analysis

Top Keywords

cellular health
12
absorbed doses
12
internalized nanoceria
8
breast carcinoma
8
carcinoma cells
8
ionizing radiation
8
nanoceria cells
8
imaging flow
8
flow cytometry
8
cells
6

Similar Publications

Effect of zoledronic acid on biological characteristics of cervical cancer cells.

Afr J Reprod Health

November 2024

Department of Obstetrics and Gynecology, Wuxi No.2 People's Hospital, Wuxi 214002, Jiangsu Province, China.

Cervical cancer (CC) is a malignant tumor in females characterized by high incidence and mortality rates, often resulting in a poor prognosis for patients. Zoledronic acid (ZA), a third-generation bisphosphonate, exhibits anti-tumor properties across various types of tumors. To further understand the effect of ZA in the treatment of CC, this article included two kinds of human CC cells (CCCs) as the research object, examining the impact of varying levels of ZA on the cells' biological properties.

View Article and Find Full Text PDF

Background: The effectiveness of rituximab (RTX) for steroid-dependent/frequently relapsing nephrotic syndrome (SDNS/FRNS) in children is well documented. However, there are insufficient data on relapse risk factors. Additionally, the retreat regimen for relapsed children requires further investigation.

View Article and Find Full Text PDF

In this present investigation, plant-mediated synthesis of titanium oxide (TiO) nanoparticles was synthesized from seagrass (Thalassia hemprichi) using the hot plate combustion method (HPCM). Synthesized TiO nanoparticles optical, functional, structural, and morphology properties were analyzed by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). SEM analysis confirmed the spherical shape of the TiO nanoparticles were observed in various sizes, viz.

View Article and Find Full Text PDF

Background: DNA methylation (DNAm) data from human samples has been leveraged to develop "epigenetic clock" algorithms that predict age and other aging-related phenotypes. Some DNAm clocks were trained using DNAm obtained from blood cells, while other clocks were trained using data from diverse tissue/cell types. To assess how DNAm clocks perform across non-blood tissue types, we applied DNAm algorithms to DNAm data generated from 9 different human tissue types.

View Article and Find Full Text PDF

Colorectal cancer (CRC) continues to be a major worldwide health issue, with elevated death rates linked to late stages of the illness. Immunotherapy has made significant progress in developing effective techniques to improve the immune system's capacity to identify and eradicate cancerous cells. This study examines the most recent advancements in CAR-T cell treatment and exosome-based immunotherapy for CRC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!