Background: A mouse model of lipopolysaccharide (LPS)-induced inflammation was used to investigate the effect of pharmacological inhibition of nuclear enzyme PARP-1 on oocyte maturation, apoptotic and necrotic death, as well as DNA integrity of follicular cells. Also, the relative expression of cumulus genes (HAS2, COX2, and GREM1) associated with oocyte developmental competence was assessed.

Methods: Mice were treated with the PARP-1 inhibitor, 4-HQN, one hour before LPS administration. After 24 h, oocyte in vitro maturation was detected. Granulosa cell DNA damage was determined by the alkaline comet assay. Live, necrotic and apoptotic cells were identified using double vital staining by fluorescent dyes, Hoechst 33342 and propidium iodide. The expression levels of cumulus genes were assessed using reverse transcriptase PCR.

Results: The administration of 4-HQN to LPS-treated mice ameliorated oocyte meiotic maturation and exerted a significant cytoprotective effect. 4-HQN attenuated LPS-induced DNA damage and favored cell survival by decreasing necrosis and apoptosis in granulosa cells. Exposure to 4-HQN increased mRNA expression levels for HAS2, COX2, and GREM1 in cumulus cells.

Conclusion: The obtained results indicate the involvement of PARP-1 in the pathogenesis of ovarian dysfunction caused by LPS. We suppose that this enzyme can be an attractive target for the therapy of inflammatory disorders in ovary. The protective action of PARP-1 inhibition could at least partly be associated with the reduction of necrotic death of follicular cells and also in other cells. However, the detailed mechanisms of the favorable effect of PARP inhibitors on endotoxin-induced ovarian disorders need to be further explored.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8784896PMC
http://dx.doi.org/10.52547/ibj.26.1.44DOI Listing

Publication Analysis

Top Keywords

follicular cells
12
dna integrity
8
necrotic death
8
cumulus genes
8
has2 cox2
8
cox2 grem1
8
dna damage
8
expression levels
8
cells
6
effects poly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!