Demands for peroxidases (POX)s with diverse physicochemical properties have steadily grown as more applications of POXs are demonstrated. Plants are among the best sources of versatile POXs, and plant biotechnology, as an agricultural hassle-free technology, promises to circumvent the limitations of natural resource exploitation and to address the demands. Following this trend, it was shown that POX production steadily increased during the 31-day subculture of Alkanna frigida (from Boraginaceae) callus on Murashige-Skoog medium containing 2,4-dichlorophenoxyacetic acid (10 M) and kinetin (10 M). The purified cationic enzyme (POX) maintained its optimal activity over pH 4-7 for 2 years. It was resistant to HO high concentrations (IC50 = 543.7 mM) and showed high specific activity in the reaction with phenol (4320.5 AU mg > 20-fold of HRP AU). Furthermore, the specificity constant ratio of guaiacol to phenol indicated a 100 times faster reaction of POX with guaiacol. However, in contrast to HRP, it had little effect on diazo derivatives of aniline and meta-diaminobenzene. Based on the resulting primary structure from the tandem mass analysis, the POX 3D structure was constructed via homology modelling. Despite the high topological similarity between the HRP and POX structures, there were important differences between the active site pockets that could explain the observed differences in the corresponding substrate spectra and the specific activities. Considering the dynamics of POX production, its inactivity towards IAA and its high affinity for guaiacol, POX may have associated roles with A. frigida cell wall construction and monolignol metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2021.113022DOI Listing

Publication Analysis

Top Keywords

alkanna frigida
8
frigida cell
8
pox production
8
pox
7
structure activity
4
activity novel
4
novel robust
4
robust peroxidase
4
peroxidase alkanna
4
cell culture
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!