Lipid peroxidation index of particulate matter: Novel metric for quantifying intrinsic oxidative potential and predicting toxic responses.

Redox Biol

Centre of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy Higher Education & Research, Mysore, India. Electronic address:

Published: November 2021

Using particulate matter (PM) mass as exposure metric does not reveal the intrinsic PM chemical characteristics or toxic potential, which is crucial for monitoring the sources of emission causing adverse health effects and developing risk mitigating strategies. Oxidative stress and ensuing lipid peroxidation (LPO) in the lung are crucial underlying mechanisms of action by which PM drives cardiorespiratory disease. In the current study, we have postulated and demonstrated that the intrinsic potential of PM to elicit LPO, defined as "LPO index" as a novel approach for characterizing oxidative potential of PM (PM) and predicting biological toxicity. First, we exposed unsaturated phosphatidylcholine (PC), an abundant phospholipid in the cell membrane, pulmonary surfactant, and lipoproteins to PM and analyzed the total burden of LPO byproducts generated as a measure of LPO index using a LPO reporter dye, BODIPY-C11. PM exposure resulted in a concentration-dependent increase in LPO. Second, we developed a novel method to expose the captured serum apoB100 lipoprotein particles to PM or its constituents and assessed the levels of specific oxidized-phospholipid on apoB100 particles by immunoassay using E06 monoclonal antibody (mab) that recognizes only PC containing oxidized-phospholipids (Ox-PCs). The immunoassay was highly sensitive to evaluate the PM LPO index and was modifiable by metal quenchers and exogenous antioxidant and radical quenchers. Third, to prove the pathophysiological relevance of Ox-PCs, we found that PM exposure generates Ox-PCs in mice lungs, pulmonary surfactant and lung cells. Fourth, we observed that treatment of macrophages with BAL fluid from PM exposed mice or PM-exposed pulmonary surfactant stimulated IL-6 production, which was abrogated by neutralization of Ox-PCs by mab E06 suggesting that Ox-PCs in lungs are proinflammatory. Overall, our study suggests that Ox-PCs as a probe of PM LPO index is a biologically relevant pathogenic biomarker and has a high value for evaluating PM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633009PMC
http://dx.doi.org/10.1016/j.redox.2021.102189DOI Listing

Publication Analysis

Top Keywords

pulmonary surfactant
12
lipid peroxidation
8
particulate matter
8
oxidative potential
8
potential predicting
8
lpo
8
ox-pcs
6
peroxidation particulate
4
matter novel
4
novel metric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!