Transforming growth factor (TGF)-β signalling commences with the engagement of TGF-β ligand to cell surface TGF-β receptors (TGFBR) stimulating Smad2 carboxyl-terminal phosphorylation (phospho-Smad2C) and downstream biological responses. In several cell models, G protein-coupled receptors (GPCRs) transactivate the TGF-β receptors type-1 (TGFBR1) leading to phospho-Smad2C, however, we have recently published that in keratinocytes thrombin did not transactivate the TGFBR1. The bulk of TGFBRs reside in the cytosol and in response to protein kinase B (Akt phosphorylation) can translocate to the cell surface increasing the cell's responsiveness to TGF-β. In this study, we investigate the role of Akt in GPCR transactivation of the TGFBR1. We demonstrate that angiotensin II and thrombin do not phosphorylate Smad2C in human vascular smooth muscle cells and in keratinocytes respectively. We used Akt agonist, SC79 to sensitise the cells to Akt and observed that Ang II and thrombin phosphorylate Smad2C via Akt/AS160-dependent pathways. We show that SC79 rapidly translocates TGFBRs to the cell surface thus increasing the cell's response to the GPCR agonist. These findings highlight novel mechanistic insight for the role of Akt in GPCR transactivation of the TGFBR1.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.16297DOI Listing

Publication Analysis

Top Keywords

gpcr transactivation
12
cell surface
12
tgf-β receptors
8
surface increasing
8
increasing cell's
8
role akt
8
akt gpcr
8
transactivation tgfbr1
8
thrombin phosphorylate
8
phosphorylate smad2c
8

Similar Publications

Background: Homo- and heteromerization of G protein-coupled receptors (GPCRs) plays an important role in the regulation of receptor functions. Recently, we demonstrated an interaction between the serotonin receptor 7 (5-HT7R), a class A GPCR, and the cell adhesion molecule CD44. However, the functional consequences of this interaction on 5-HT7R-mediated signaling remained enigmatic.

View Article and Find Full Text PDF

The Smad transcription factors are well known for their role at the core of transforming growth factor-β (TGF-β) signalling. However, recent evidence shows that the Smad transcription factors play a vital role downstream of other classes of receptors including G protein-coupled receptors (GPCR). The versatility of Smad transcription factors originated from the two regions that can be differently activated by the TGF-β receptor superfamily or through the recruitment of intracellular kinases stimulated by other receptors classes such as GPCRs.

View Article and Find Full Text PDF

Transactivation of epidermal growth factor receptors (EGFR) provides intricate control over multiple regulatory cellular processes that merge the diversity of G protein-coupled receptors (GPCRs) with the robust signaling capacities of receptor tyrosine kinases. Contrary to the typical assertions, our findings demonstrate that EGFR transactivation contributes to the desensitization of GPCRs. Repeated agonist stimulation of certain GPCRs enhanced EGFR transactivation, triggering a series of cellular events associated with GPCR desensitization.

View Article and Find Full Text PDF

A role for plasma membrane Ca ATPases in regulation of cellular Ca homeostasis by sphingosine kinase-1.

Pflugers Arch

December 2024

Institut Für Allgemeine Pharmakologie Und Toxikologie, Goethe-Universität Frankfurt, Universitätsklinikum, Frankfurt am Main, Germany.

Sphingosine-1-phosphate (S1P) is a ubiquitous lipid mediator, acting via specific G-protein-coupled receptors (GPCR) and intracellularly. Previous work has shown that deletion of S1P lyase caused a chronic elevation of cytosolic [Ca] and enhanced Ca storage in mouse embryonic fibroblasts. Here, we studied the role of sphingosine kinase (SphK)-1 in Ca signaling, using two independently generated EA.

View Article and Find Full Text PDF

Signaling by neutrophil G protein-coupled receptors that regulate the release of superoxide anions.

J Leukoc Biol

November 2024

Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gulhedsgatan 10, Göteborg S-41346, Sweden.

In human peripheral blood, the neutrophil granulocytes (neutrophils) are the most abundant white blood cells. These professional phagocytes are rapidly recruited from the bloodstream to inflamed tissues by chemotactic factors that signal danger. Neutrophils, which express many receptors that are members of the large family of G protein-coupled receptors (GPCRs), are critical for the elimination of pathogens and inflammatory insults, as well as for the resolution of inflammation leading to tissue repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!