The inverse base rate effect (IBRE) is a nonrational behavioral phenomenon in predictive learning. Canonically, participants learn that the AB stimulus compound leads to one outcome and that AC leads to another outcome, with AB being presented three times as often as AC. When subsequently presented with BC, the outcome associated with AC is preferentially selected, in opposition to the underlying base rates of the outcomes. The current leading explanation is based on error-driven learning. A key component of this account is prediction error, a concept previously linked to a number of brain areas including the anterior cingulate, the striatum, and the dorsolateral prefrontal cortex. The present work is the first fMRI study to directly examine the IBRE. Activations were noted in brain areas linked to prediction error, including the caudate body, the anterior cingulate, the ventromedial prefrontal cortex, and the right dorsolateral prefrontal cortex. Analyzing the difference in activations for singular key stimuli (B and C), as well as frequency matched controls, supports the predictions made by the error-driven learning account.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8837595PMC
http://dx.doi.org/10.1002/hbm.25729DOI Listing

Publication Analysis

Top Keywords

prefrontal cortex
12
inverse base
8
base rate
8
leads outcome
8
error-driven learning
8
prediction error
8
brain areas
8
anterior cingulate
8
dorsolateral prefrontal
8
neural correlates
4

Similar Publications

Abnormally slow dynamics in occipital cortex of depression.

J Affect Disord

January 2025

University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Canada. Electronic address:

Aim: Major depressive disorder (MDD) is characterized by altered activity in various higher-order regions like the anterior cingulate and prefrontal cortex. While some findings also show changes in lower-order sensory regions like the occipital cortex in MDD, the latter's exact neural and temporal, e.g.

View Article and Find Full Text PDF

The dorsolateral prefrontal cortex (dlPFC) is increasingly targeted by various noninvasive transcranial magnetic stimulation or transcranial current stimulation protocols in a range of neuropsychiatric and other brain disorders. The rationale for this therapeutic modulation remains elusive. A model is proposed, and up-to-date evidence is discussed, suggesting that the dlPFC is a high-level cortical centre where uncertainty management, movement facilitation, and cardiovascular control processes are intertwined and integrated to deliver optimal behavioural responses in particular environmental or emotional contexts.

View Article and Find Full Text PDF

Introduction: Chronic low back pain (CLBP) is a global health issue, and its nonspecific causes make treatment challenging. Understanding the neural mechanisms of CLBP should contribute to developing effective therapies.

Objectives: To compare current source density (CSD) and functional connectivity (FC) extracted from resting electroencephalography (EEG) between patients with CLBP and healthy controls and to examine the correlations between EEG indices and symptoms.

View Article and Find Full Text PDF

Repetitive transcranial magnetic stimulation for fibromyalgia: are we there yet?

Pain Rep

February 2025

Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.

Repetitive transcranial magnetic stimulation (rTMS) has increasingly been used to modify cortical maladaptive plastic changes shown to occur in fibromyalgia (FM) and to correlate with symptoms. Evidence for its efficacy is currently inconclusive, mainly due to heterogeneity of stimulation parameters used in trials available to date. Here, we reviewed the current evidence on the use of rTMS for FM control in the format of a narrative review, in which a systematic dissection of the different stimulation parameters would be possible.

View Article and Find Full Text PDF

Introduction: Autism Spectrum Disorder (ASD) is characterized by deficits in social cognition, self-referential processing, and restricted repetitive behaviors. Despite the established clinical symptoms and neurofunctional alterations in ASD, definitive biomarkers for ASD features during neurodevelopment remain unknown. In this study, we aimed to explore if activation in brain regions of the default mode network (DMN), specifically the medial prefrontal cortex (MPC), posterior cingulate cortex (PCC), superior temporal sulcus (STS), inferior frontal gyrus (IFG), angular gyrus (AG), and the temporoparietal junction (TPJ), during resting-state functional magnetic resonance imaging (rs-fMRI) is associated with possible phenotypic features of autism (PPFA) in a large, diverse youth cohort.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!