Intercellular propagation of aggregated protein inclusions along actin-based tunneling nanotubes (TNTs) has been reported as a means of pathogenic spread in Alzheimer's, Parkinson's, and Huntington's diseases. Propagation of oligomeric-structured polyglutamine-expanded ataxin-1 (Atxn1[154Q]) has been reported in the cerebellum of a Spinocerebellar ataxia type 1 (SCA1) knock-in mouse to correlate with disease propagation. In this study, we investigated whether a physiologically relevant polyglutamine-expanded ATXN1 protein (ATXN1[82Q]) could propagate intercellularly. Using a cerebellar-derived live cell model, we observed ATXN1 aggregates form in the nucleus, subsequently form in the cytoplasm, and finally, propagate to neighboring cells along actin-based intercellular connections. Additionally, we observed the facilitation of aggregate-resistant proteins into aggregates given the presence of aggregation-prone proteins within cells. Taken together, our results support a pathogenic role of intercellular propagation of polyglutamine-expanded ATXN1 inclusions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8986690 | PMC |
http://dx.doi.org/10.1007/s12031-021-01944-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!