Objective: The beneficial effect of angiotensin(1-7) (Ang(1-7)), via the activation of its receptor, MAS-1, has been noted in diabetes treatment; however, how Ang(1-7) or MAS-1 affects insulin secretion remains elusive and whether the endogenous level of Ang(1-7) or MAS-1 is altered in diabetic individuals remains unexplored. We recently identified an important role of cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated Cl- channel, in the regulation of insulin secretion. Here, we tested the possible involvement of CFTR in mediating Ang(1-7)'s effect on insulin secretion and measured the level of Ang(1-7), MAS-1 as well as CFTR in the blood of individuals with or without type 2 diabetes.

Methods: Ang(1-7)/MAS-1/CFTR pathway was determined by specific inhibitors, gene manipulation, Western blotting as well as insulin ELISA in a pancreatic β-cell line, RINm5F. Human blood samples were collected from 333 individuals with (n = 197) and without (n = 136) type 2 diabetes. Ang(1-7), MAS-1 and CFTR levels in the human blood were determined by ELISA.

Results: In RINm5F cells, Ang(1-7) induced intracellular cAMP increase, cAMP-response element binding protein (CREB) activation, enhanced CFTR expression and potentiated glucose-stimulated insulin secretion, which were abolished by a selective CFTR inhibitor, RNAi-knockdown of CFTR, or inhibition of MAS-1. In human subjects, the blood levels of MAS-1 and CFTR, but not Ang(1-7), were significantly higher in individuals with type 2 diabetes as compared to those in non-diabetic healthy subjects. In addition, blood levels of MAS-1 and CFTR were in significant positive correlation in type-2 diabetic but not non-diabetic subjects.

Conclusion: These results suggested that MAS-1 and CFTR as key players in mediating Ang(1-7)-promoted insulin secretion in pancreatic β-cells; MAS-1 and CFTR are positively correlated and both upregulated in type 2 diabetes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8789014PMC
http://dx.doi.org/10.1530/EC-21-0357DOI Listing

Publication Analysis

Top Keywords

insulin secretion
24
mas-1 cftr
20
type diabetes
16
ang1-7 mas-1
16
cftr
12
mas-1
11
secretion pancreatic
8
pancreatic β-cells
8
level ang1-7
8
individuals type
8

Similar Publications

E3 ligase substrate adaptor SPOP fine-tunes the UPR of pancreatic β cells.

Genes Dev

December 2024

Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA;

The Cullin-3 E3 ligase adaptor protein SPOP targets proteins for ubiquitination and proteasomal degradation. We previously established the β-cell transcription factor (TF) and human diabetes gene PDX1 as an SPOP substrate, suggesting a functional role for SPOP in the β cell. Here, we generated a β-cell-specific deletion mouse strain ( ) and found that is necessary to prevent aberrant basal insulin secretion and for maintaining glucose-stimulated insulin secretion through impacts on glycolysis and glucose-stimulated calcium flux.

View Article and Find Full Text PDF

Background: There is no strong evidence demonstrating whether or not aerobic exercise in conjunction with resistance exercise improves metabolic diabetes markers in postmenopausal women.

Objective: To evaluate the effect of aerobic exercise and resistance training on metabolic markers in postmenopausal women with type 2 diabetes mellitus (T2DM) by means of a systematic review and meta-analysis.

Methods: The searches were completed using EMBASE, MEDLINE/PubMed, Scopus and Web of Science databases.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) is a complex condition characterised by the interaction between insulin resistance and beta cell dysfunction. C-peptide, a key biomarker of endogenous insulin secretion, has a role in diagnosing type 1 diabetes (T1D). However, its utility in T2D has not been extensively studied.

View Article and Find Full Text PDF

Background: Fulminant type 1 diabetes mellitus (FT1DM) is a severe subtype of type 1 diabetes characterized by rapid onset, metabolic disturbances, and irreversible insulin secretion failure. Recent studies have suggested associations between FT1DM and certain medications, warranting further investigation.

Objectives: This study aims to analyze drugs associated with an increased risk of FT1DM using the Food and Drug Administration Adverse Event Reporting System (FAERS) database.

View Article and Find Full Text PDF

Ice plant () is a vegetable with various therapeutic uses, one of which is its ability to prevent diabetes. The present study examined the insulin secretion effect related to the mechanism of action of ice plant extract (IPE) and its active compound D-pinitol in a rat insulin-secreting β-cell line, INS-1, as well as in diabetic rats. : The glucose-stimulated insulin secretion (GSIS) test and Western blotting were used to measure GSIS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!